首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Mechanism of polarization of Listeria monocytogenes surface protein ActA   总被引:3,自引:0,他引:3  
The polar distribution of the ActA protein on the surface of the Gram-positive intracellular bacterial pathogen, Listeria monocytogenes, is required for bacterial actin-based motility and successful infection. ActA spans both the bacterial membrane and the peptidoglycan cell wall. We have directly examined the de novo ActA polarization process in vitro by using an ActA-RFP (red fluorescent protein) fusion. After induction of expression, ActA initially appeared at distinct sites along the sides of bacteria and was then redistributed over the entire cylindrical cell body through helical cell wall growth. The accumulation of ActA at the bacterial poles displayed slower kinetics, occurring over several bacterial generations. ActA accumulated more efficiently at younger, less inert poles, and proper polarization required an optimal balance between protein secretion and bacterial growth rates. Within infected host cells, younger generations of L. monocytogenes initiated motility more quickly than older ones, consistent with our in vitro observations of de novo ActA polarization. We propose a model in which the polarization of ActA, and possibly other Gram-positive cell wall-associated proteins, may be a direct consequence of the differential cell wall growth rates along the bacterium and dependent on the relative rates of protein secretion, protein degradation and bacterial growth.  相似文献   

2.
Listeria monocytogenes is a Gram-positive facultative intracytoplasmic bacterial pathogen that exhibits rapid actin-based motility in eukaryotic cells and in cell-free cytoplasmic extracts. The protein product of the actA gene is required for bacterial movement and is normally expressed in a polarized fashion on the bacterial surface. Here we demonstrate that the ActA protein is sufficient to direct motility in the absence of other L. monocytogenes gene products, and that polarized localization of the protein is required for efficient unidirectional movement. We have engineered a fusion protein combining ActA with the C-terminal domain of the LytA protein of Streptococcus pneumoniae , which mediates high-affinity binding to DEAE-cellulose and to choline moieties present in the S. pneumoniae cell wall. DEAE-cellulose fragments or S. pneumoniae coated uniformly with the ActA/LytA fusion protein nucleate actin filament growth in cytoplasmic extracts, but do not move efficiently. However, when ActA/LytA-coated S. pneumoniae is grown to polarize the distribution of the fusion protein, the bacteria exhibit unidirectional actin-based movement similar to the normal movement of L. monocytogenes .  相似文献   

3.
The intracellular bacterial pathogen Listeria monocytogenes moves inside the host-cell cytoplasm propelled by continuous actin assembly at one pole of the bacterium. This process requires expression of the bacterial surface protein ActA. Recently, in order to identify the regions of ActA which are required for actin assembly, we and others have expressed different domains of ActA by transfection in eukaryotic cells. As this type of approach cannot address the role of ActA in the actin-driven bacterial propulsion, we have now generated several L. monocytogenes strains expressing different domains of ActA and analysed the ability of the different domains to trigger actin assembly and bacterial movement in both infected cells and cytoplasmic extracts. We show here that the amino-terminal part is critical for F-actin assembly and movement. The internal proline-rich repeats and the carboxy-terminal domains are not essential. However, in vitro motility assays have demonstrated that mutants lacking the proline-rich repeats domain of ActA moved two times slower (6±2 µm min−1) than the wild type (13±3µm min−1}). In addition, phosphatase treatment of protein extracts of cells infected with the L. monocytogenes strains expressing the ActA variants suggested that phosphorylation may not be essential for ActA activity.  相似文献   

4.
5.
Listeria monocytogenes, a facultative intracellular pathogen, employs actin and other microfilament-associated proteins to move through the host cell cytoplasm. Isogenic mutants of L. monocytogenes lacking the surface-bound ActA polypeptide no longer interact with cytoskeletal elements and are, as a consequence, non-motile (Domann et al., 1992, EMBO J., 11, 1981-1990; Kocks et al., 1992, Cell, 68, 521-531). To investigate the interaction of ActA with the microfilament system in the absence of other bacterial factors, the listerial actA gene was expressed in eukaryotic cells. Immunofluorescence studies revealed that the complete ActA, including its C-terminally located bacterial membrane anchor, colocalized with mitochondria in transfected cells. When targeted to mitochondria, the ActA polypeptide recruited actin and alpha-actinin to these cellular organelles with concomitant reorganization of the microfilament system. Removal of the internal proline-rich repeat region of ActA completely abrogated interaction with cytoskeletal components. Our results identify the ActA polypeptide as a nucleator of the actin cytoskeleton and provide the first insights into the molecular nature of such controlling elements in microfilament organization.  相似文献   

6.
Listeria monocytogenes has emerged as a remarkably tractable pathogen to dissect basic aspects of cell biology, intracellular pathogenesis, and innate and acquired immunity. In order to maintain its intracellular lifestyle, L. monocytogenes has evolved a number of mechanisms to exploit host processes to grow and spread cell to cell without damaging the host cell. The pore-forming protein listeriolysin O mediates escape from host vacuoles and utilizes multiple fail-safe mechanisms to avoid causing toxicity to infected cells. Once in the cytosol, the L. monocytogenes ActA protein recruits host cell Arp2/3 complexes and enabled/vasodilator-stimulated phosphoprotein family members to mediate efficient actin-based motility, thereby propelling the bacteria into neighboring cells. Alteration in any of these processes dramatically reduces the ability of the bacteria to establish a productive infection in vivo.  相似文献   

7.
The bacterial pathogen, Listeria monocytogenes, grows in the cytoplasm of host cells and spreads intercellularly using a form of actin-based motility mediated by the bacterial protein ActA. Tightly adherent monolayers of MDCK cells that constitutively express GFP-actin were infected with L. monocytogenes, and intercellular spread of bacteria was observed by video microscopy. The probability of formation of membrane-bound protrusions containing bacteria decreased with host cell monolayer age and the establishment of extensive cell-cell contacts. After their extension into a recipient cell, intercellular membrane-bound protrusions underwent a period of bacterium-dependent fitful movement, followed by their collapse into a vacuole and rapid vacuolar lysis. Actin filaments in protrusions exhibited decreased turnover rates compared with bacterially associated cytoplasmic actin comet tails. Recovery of motility in the recipient cell required 1-2 bacterial generations. This delay may be explained by acid-dependent cleavage of ActA by the bacterial metalloprotease, Mpl. Importantly, we have observed that low levels of endocytosis of neighboring MDCK cell surface fragments occurs in the absence of bacteria, implying that intercellular spread of bacteria may exploit an endogenous process of paracytophagy.  相似文献   

8.
Kim YG  Jeong JH  Ha NC  Kim KJ 《Proteins》2011,79(4):1205-1214
Listeria monocytogenes is a facultative intracellular pathogen invading humans and animals with the highest fatality rate among the food-borne pathogens. The Listeria pathogenic processes, such as cell entry and escape from phagosomes, depend on the actions of diverse bacterial factors, including lipoproteins. Here, we report the crystal structure of Lmo2642, a conserved putative lipoprotein containing a Ser/Thr phosphatase domain. The protein consists of two distinct domains: a catalytic domain that belongs to the metallophosphoesterase superfamily and an auxiliary α-helical bundle domain. The active site in the catalytic domain of Lmo2642 contains a dinuclear metal center in which Mn2(+) and Fe3(+) are preferentially positioned at the site1 and site2, respectively. On the basis of the structural analysis and enzymatic assays, we identified the biochemical activity of the protein as a cyclic nucleotide phosphodiesterase toward 2',3'- and 3',5'-cyclic nucleotides. Considering the cNMP phosphodiesterase activity and the putative surface localization of Lmo2642, we speculate that Lmo2642 has some potential roles in the host-pathogen interactions by changing the cAMP concentration of host cells during L. monocytogenes infection.  相似文献   

9.
Listeria monocytogenes is an intracellular pathogen that is able to colonize the cytosol of macrophages. Here we examined the interaction of this pathogen with autophagy, a host cytosolic degradative pathway that constitutes an important component of innate immunity towards microbial invaders. L. monocytogenes infection induced activation of the autophagy system in macrophages. At 1 h post infection (p.i.), a population of intracellular bacteria ( approximately 37%) colocalized with the autophagy marker LC3. These bacteria were within vacuoles and were targeted by autophagy in an LLO-dependent manner. At later stages in infection (by 4 h p.i.), the majority of L. monocytogenes escaped into the cytosol and rapidly replicated. At these times, less than 10% of intracellular bacteria colocalized with LC3. We found that ActA expression was sufficient to prevent autophagy of bacteria in the cytosol of macrophages. Surprisingly, ActA expression was not strictly necessary, indicating that other virulence factors were involved. Accordingly, we also found a role for the bacterial phospholipases, PI-PLC and PC-PLC, in autophagy evasion, as bacteria lacking phospholipase expression were targeted by autophagy at later times in infection. Together, our results demonstrate that L. monocytogenes utilizes multiple mechanisms to avoid destruction by the autophagy system during colonization of macrophages.  相似文献   

10.
We have examined the process by which the intracellular bacterial pathogen Listeria monocytogenes initiates actin-based motility and determined the contribution of the variable surface distribution of the ActA protein to initiation and steady-state movement. To directly correlate ActA distributions to actin dynamics and motility of live bacteria, ActA was fused to a monomeric red fluorescent protein (mRFP1). Actin comet tail formation and steady-state bacterial movement rates both depended on ActA distribution, which in turn was tightly coupled to the bacterial cell cycle. Motility initiation was found to be a highly complex, multistep process for bacteria, in contrast to the simple symmetry breaking previously observed for ActA-coated spherical beads. F-actin initially accumulated along the sides of the bacterium and then slowly migrated to the bacterial pole expressing the highest density of ActA as a tail formed. Early movement was highly unstable with extreme changes in speed and frequent stops. Over time, saltatory motility and sensitivity to the immediate environment decreased as bacterial movement became robust at a constant steady-state speed.  相似文献   

11.
The surface subproteome of Listeria monocytogenes that includes many proteins already known to be involved in virulence and interaction with host cells has been characterized. A new method for the isolation of a defined surface proteome of low complexity has been established based on serial extraction of proteins by different salts at high concentration, and in all 55 proteins were identified by N-terminal sequencing and mass spectrometry. About 16% of these proteins are of unknown function and three proteins have no orthologue in the nonpathogenic L. innocua and might be involved in virulence mechanisms. Remarkably, a relatively high number of proteins with a function in the cytoplasmic compartment was identified in this surface proteome. These proteins had neither predicted or detectable signal peptides nor could any modification be observed except removal of the N-terminal methionine. Enolase (Lmo2455) is one of these proteins. It was shown to be present in the cell wall of the pathogen by immunoelectron microscopy and, along with heat shock factor DnaK (Lmo1473), elongation factor TU (Lmo2653), and glyceraldehyde-3-phosphate dehydrogenase (Lmo2459), it was found to be able to bind human plasminogen in overlay blots and surface plasmon resonance (SPR) experiments. The KD values of these interactions were determined by SPR measurements. The data indicate a possible role of these proteins as receptors for human plasminogen on the bacterial cell surface. The potential role of this recruitment of a host protease for extracellular invasion mechanisms is discussed.  相似文献   

12.
The surface-bound ActA polypeptide of the intracellular bacterial pathogen Listeria monocytogenes is the sole listerial factor needed for recruitment of host actin filaments by intracellularly motile bacteria. Here we report that following Listeria infection the host vasodilator-stimulated phosphoprotein (VASP), a microfilament- and focal adhesion-associated substrate of both the cAMP- and cGMP-dependent protein kinases, accumulates on the surface of intracytoplasmic bacteria prior to the detection of F-actin 'clouds'. VASP remains associated with the surface of highly motile bacteria, where it is polarly located, juxtaposed between one extremity of the bacterial surface and the front of the actin comet tail. Since actin filament polymerization occurs only at the very front of the tail, VASP exhibits properties of a host protein required to promote actin polymerization. Purified VASP binds directly to the ActA polypeptide in vitro. A ligand-overlay blot using purified radiolabelled VASP enabled us to identify the ActA homologue of the related intracellular motile pathogen, Listeria ivanovii, as a protein with a molecular mass of approximately 150 kDa. VASP also associates with actin filaments recruited by another intracellularly motile bacterial pathogen, Shigella flexneri. Hence, by the simple expedient of expressing surface-bound attractor molecules, bacterial pathogens effectively harness cytoskeletal components to achieve intracellular movement.  相似文献   

13.
The cell wall structure of Salmonella typhimurium has been studied for the first time during transit from free-living to parasitic lifestyles. Peptidoglycan of S. typhimurium proliferating within human epithelial cells contains a high proportion of previously unidentified muropeptides (5–10-fold higher than in extracellular bacteria). Amino acid and mass-spectrometry analyses showed that these new components consist of dimeric cross-linked muropeptides lacking one of the two disaccharide ( N -acetyl-glucosamine-β-(1→4)- N -acetyl-muramic acid) molecules. This unique structure suggests an active role for an N -acetyl-muramyl- l -alanine-amidase in remodelling the peptidoglycan of intracellular S. typhimurium . Additional alterations observed included: (i) the absence of glycine-containing muropeptides; (ii) the increase in the relative proportion of muropeptides cross-linked by l ( meso )-diaminopimelyl- d ( meso )-diaminopimelic acid ( l – d ) peptide bridges; and, (iii) the decrease in the global cross-linkage of the macromolecule. The structural alterations observed in the peptidoglycan of intracellular bacteria do not produce loss of the cell envelope. These results show that intracellular residence of S. typhimurium within epithelial cells is accompanied by significant changes in the bacterial cell wall. Remodelling of peptidoglycan structure may constitute another sophisticated strategy of this pathogen for adapting to and colonizing the intracellular niche of eukaryotic cells.  相似文献   

14.
Genome analyses have revealed that the Gram-positive bacterial species Listeria monocytogenes and L. innocua contain a large number of genes encoding surface proteins predicted to be covalently bound to the cell wall (41 and 34, respectively). The function of most of these proteins is unknown and they have not even been identified biochemically. Here, we report the first characterization of the Listeria cell wall proteome using a nonelectrophoretic approach. The material analyzed consisted of a peptide mixture obtained from a cell wall extract insoluble in boiling 4% SDS. This extract, containing peptidoglycan (intrinsically resistant to proteases) and strongly associated proteins, was digested with trypsin in a solution with 0.01% SDS, used to favor protein digestion throughout the peptidoglycan. The resulting complex peptide mixture was fractionated and analyzed by two-dimensional nanoliquid chromatography coupled to ion-trap mass spectrometry. A total of 30 protein species were unequivocally identified in cell wall extracts of the genome strains L. monocytogenes EGD-e (19 proteins) and L. innocua CLIP11262 (11 proteins). Among them, 20 proteins bearing an LPXTG motif recognized for covalent anchoring to the peptidoglycan were identified. Other proteins detected included peptidoglycan-lytic enzymes, a penicillin-binding protein, and proteins bearing an NXZTN motif recently proposed to direct protein anchoring to the peptidoglycan. The marked sensitivity of the method makes it highly attractive in the post-genome era for defining the cell wall proteome in any bacterial species. This information will be useful to study novel protein-peptidoglycan associations and to rapidly identify new targets in the surface of important bacterial pathogens.  相似文献   

15.
Upon infection of mammalian cells, Listeria monocytogenes lyses the phagosome and enters the cytosol, where it secretes proteins necessary for its intracellular growth cycle. Consequently, bacterial proteins exposed to the cytosol are potential targets for degradation by host cytosolic proteases. One pathway for degradation of host cytosolic proteins, the N-end rule pathway, involves recognition of the N-terminal amino acid and is mediated by the proteasome. However, very few natural N-end rule substrates have been identified. We have examined the L. monocytogenes ActA protein as a potential target for this pathway. ActA is an essential determinant of L. monocytogenes pathogenesis that is required to induce actin-based motility and cell-to-cell spread. We show that the half-life of a secreted form of ActA can be altered in the mammalian cytosol by changing the N-terminal amino acid. Moreover, the introduction of a destabilizing N-terminus into the functional, surface-bound form of ActA results in a small-plaque phenotype in L2 cells, which is partially reversible by an inhibitor of the proteasome. These results indicate that the L. monocytogenes ActA protein is a natural N-end rule substrate, and that optimal function of ActA in mediating cell-to-cell spread is dependent upon its intracellular turnover rate.  相似文献   

16.
A role for ActA in epithelial cell invasion by Listeria monocytogenes   总被引:6,自引:1,他引:6  
We assessed the role of the actin-polymerizing protein, ActA, in host cell invasion by Listeria monocytogenes . An in frame Δ actA mutant was constructed in a hyperinvasive strain of prfA * genotype, in which all genes of the PrfA-dependent virulence regulon, including actA , are highly expressed in vitro . Loss of ActA production in prfA * bacteria reduced entry into Caco-2, HeLa, MDCK and Vero epithelial cells to basal levels. Reintroduction of actA into the Δ actA prfA * mutant fully restored invasiveness, demonstrating that ActA is involved in epithelial cell invasion. ActA did not contribute to internalization by COS-1 fibroblasts and Hepa 1-6 hepatocytes. Expression of actA in Listeria innocua was sufficient to promote entry of this non-invasive species into epithelial cell lines, but not into COS-1 and Hepa 1-6 cells, indicating that ActA directs an internalization pathway specific for epithelial cells. Scanning electron microscopy of infected Caco-2 human enterocytes suggested that this pathway involves microvilli. prfA * bacteria, but not wild-type bacteria (which express PrfA-dependent genes very weakly in vitro ) or prfA *Δ actA bacteria, efficiently invaded differentiated Caco-2 cells via their apical surface. Microvilli played an active role in the phagocytosis of the prfA * strain, and actA was required for their remodelling into pseudopods mediating bacterial uptake. Thus, ActA appears to be a multifunctional virulence factor involved in two important aspects of Listeria pathogenesis: actin-based motility and host cell tropism and invasion.  相似文献   

17.
The Listeria monocytogenes surface protein ActA is an important virulence factor required for listerial intracellular movement by inducing actin polymerization. The only host cell protein known that directly interacts with ActA is the phosphoprotein VASP, which binds to the central proline-rich repeat region of ActA. To identify additional ActA-binding proteins, we applied the yeast two-hybrid system to search for mouse proteins that interact with ActA. A mouse cDNA library was screened for ActA-interacting proteins (AIPs) using ActA from strain L. monocytogen es EGD as bait. Three different AIPs were identified, one of which was identical to the human protein LaXp180 (also called CC1). Binding of LaXp180 to ActA was also demonstrated in vitro using recombinant histidine-tagged LaXp180 and recombinant ActA. Using an anti-LaXp180 antibody and fluorescence microscopy, we showed that LaXp180 co-localizes with a subset of intracellular, ActA-expressing L. monocytogenes but was never detected on intracellularly growing but ActA-deficient mutants. Furthermore, LaXp180 binding to intracellular L. monocytogenes was asymmetrical and mutually exclusive with F-actin polymerization on the bacterial surface. LaXp180 is a putative binding partner of stathmin, a protein involved in signal transduction pathways and in the regulation of microtubule dynamics. Using immunofluorescence, we showed that stathmin co-localizes with intracellular ActA-expressing L. monocytogenes .  相似文献   

18.
Pathogenic bacteria have to cope with defence mechanisms mediated by adaptive and innate immunity of the host cells. Cationic antimicrobial peptides (CAMPs) represent one of the most effective components of the host innate immune response. Here we establish the function of Lmo1695, a member of the VirR-dependent virulence regulon, recently identified in Listeria monocytogenes. Lmo1695 encodes a membrane protein of 98 kDa with strong homology to the multiple peptide resistance factor (MprF) of Staphylococcus aureus. Like staphylococcal MprF, we found that Lmo1695 is involved in the synthesis of the membrane phospholipid lysylphosphatidylglycerol (L-PG). In addition, Lmo1695 is also essential for lysinylation of diphosphatidylglycerol (DPG), another phospholipid widely distributed in bacterial membranes. A Deltalmo1695 mutant lacking the lysinylated phospholipids was particularly susceptible to CAMPs of human and bacterial origin. The mutant strain infected both epithelial cells and macrophages only poorly and was attenuated for virulence when tested in a mouse model of infection. Lmo1695 is a member of a growing list of survival factors which enable growth of L. monocytogenes in different environments.  相似文献   

19.
Listeria monocytogenes is a bacterial pathogen that induces its own entry into a broad range of mammalian cells through interaction of the bacterial surface protein InlB with the cellular receptor Met, promoting an actin polymerization/depolymerization process that leads to pathogen engulfment. Phosphatidylinositol bisphosphate (PI[4,5]P(2)) and trisphosphate (PI[3,4,5]P(3)) are two major phosphoinositide species that function as molecular scaffolds, recruiting cellular effectors that regulate actin dynamics during L. monocytogenes infection. Because the phosphatidylinositol 5'-phosphatase OCRL dephosphorylates PI(4,5)P(2) and to a lesser extent PI(3,4,5)P(3), we investigated whether this phosphatase modulates cell invasion by L. monocytogenes. Inactivation of OCRL by small interfering RNA (siRNA) leads to an increase in the internalization levels of L. monocytogenes in HeLa cells. Interestingly, OCRL depletion does not increase but rather decreases the surface expression of the receptor Met, suggesting that OCRL controls bacterial internalization by modulating signaling cascades downstream of Met. Immuno-fluorescence microscopy reveals that endogenous and overexpressed OCRL are present at L. monocytogenes invasion foci; live-cell imaging additionally shows that actin depolymerization coincides with EGFP-OCRL-a accumulation around invading bacteria. Together, these observations suggest that OCRL promotes actin depolymerization during L. monocytogenes infection; in agreement with this hypothesis, OCRL depletion leads to an increase in actin, PI(4,5)P(2), and PI(3,4,5)P(3) levels at bacterial internalization foci. Furthermore, in cells knocked down for OCRL, transfection of enzymatically active EGFP-OCRL-a (but not of a phosphatase-dead enzyme) decreases the levels of intracellular L. monocytogenes and of actin associated with invading bacteria. These results demonstrate that through its phosphatase activity, OCRL restricts L. monocytogenes invasion by modulating actin dynamics at bacterial internalization sites.  相似文献   

20.
Dortet L  Mostowy S  Cossart P 《Autophagy》2012,8(1):132-134
Autophagy is a cell-autonomous mechanism of innate immunity that protects the cytosol against bacterial infection. Invasive bacteria, including Listeria monocytogenes, have thus evolved strategies to counteract a process that limits their intracellular growth. ActA is a surface protein produced by L. monocytogenes to polymerize actin and mediate intra- and intercellular movements, which plays a critical role in autophagy escape. We have recently investigated the role of another L. monocytogenes surface protein, the internalin InlK, in the infection process. We showed that in the cytosol of infected cells, InlK interacts with the Major Vault Protein (MVP), the main component of cytoplasmic ribonucleoprotein particles named vaults. Although MVP has been implicated in a variety of key cellular process, its role remains elusive. We demonstrated that L. monocytogenes is able, via InlK, to decorate its surface with MVP in order to escape autophagic recognition. Strikingly, this new strategy used by L. monocytogenes to avoid autophagy is independent of ActA, suggesting that InlK-MVP interactions and actin polymerization are two processes that favor in the same manner the infection process. Understanding the role of MVP may provide new insights into bacterial infection and autophagy.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号