首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Protein‐protein interactions control a large range of biological processes and their identification is essential to understand the underlying biological mechanisms. To complement experimental approaches, in silico methods are available to investigate protein‐protein interactions. Cross‐docking methods, in particular, can be used to predict protein binding sites. However, proteins can interact with numerous partners and can present multiple binding sites on their surface, which may alter the binding site prediction quality. We evaluate the binding site predictions obtained using complete cross‐docking simulations of 358 proteins with 2 different scoring schemes accounting for multiple binding sites. Despite overall good binding site prediction performances, 68 cases were still associated with very low prediction quality, presenting individual area under the specificity‐sensitivity ROC curve (AUC) values below the random AUC threshold of 0.5, since cross‐docking calculations can lead to the identification of alternate protein binding sites (that are different from the reference experimental sites). For the large majority of these proteins, we show that the predicted alternate binding sites correspond to interaction sites with hidden partners, that is, partners not included in the original cross‐docking dataset. Among those new partners, we find proteins, but also nucleic acid molecules. Finally, for proteins with multiple binding sites on their surface, we investigated the structural determinants associated with the binding sites the most targeted by the docking partners.  相似文献   

2.
Computational structural prediction of macromolecular interactions is a fundamental tool toward the global understanding of cellular processes. The Critical Assessment of PRediction of Interactions (CAPRI) community-wide experiment provides excellent opportunities for blind testing computational docking methods and includes original targets, thus widening the range of docking applications. Our participation in CAPRI rounds 38 to 45 enabled us to expand the way we include evolutionary information in structural predictions beyond our standard free docking InterEvDock pipeline. InterEvDock integrates a coarse-grained potential that accounts for interface coevolution based on joint multiple sequence alignments of two protein partners (co-alignments). However, even though such co-alignments could be built for none of the CAPRI targets in rounds 38 to 45, including host-pathogen and protein-oligosaccharide complexes and a redesigned interface, we identified multiple strategies that can be used to incorporate evolutionary constraints, which helped us to identify the most likely macromolecular binding modes. These strategies include template-based modeling where only local adjustments should be applied when query-template sequence identity is above 30% and larger perturbations are needed below this threshold; covariation-based structure prediction for individual protein partners; and the identification of evolutionarily conserved and structurally recurrent anchoring interface motifs. Overall, we submitted correct predictions among the top 5 models for 12 out of 19 interface challenges, including four High- and five Medium-quality predictions. Our top 20 models included correct predictions for three out of the five targets we missed in the top 5, including two targets for which misleading biological data led us to downgrade correct free docking models.  相似文献   

3.
Although reliable docking can now be achieved for systems that do not undergo important induced conformational change upon association, the presence of flexible surface loops, which must adapt to the steric and electrostatic properties of a partner, generally presents a major obstacle. We report here the first docking method that allows large loop movements during a systematic exploration of the possible arrangements of the two partners in terms of position and rotation. Our strategy consists in taking into account an ensemble of possible loop conformations by a multi-copy representation within a reduced protein model. The docking process starts from regularly distributed positions and orientations of the ligand around the whole receptor. Each starting configuration is submitted to energy minimization during which the best-fitting loop conformation is selected based on the mean-field theory. Trials were carried out on proteins with significant differences in the main-chain conformation of the binding loop between isolated form and complexed form, which were docked to their partner considered in their bound form. The method is able to predict complexes very close to the crystal complex both in terms of relative position of the two partners and of the geometry of the flexible loop. We also show that introducing loop flexibility on the isolated protein form during systematic docking largely improves the predictions of relative position of the partners in comparison with rigid-body docking.  相似文献   

4.
ABSTRACT: BACKGROUND: Protein-DNA interactions are important for many cellular processes, however structural knowledge for a large fraction of known and putative complexes is still lacking. Computational docking methods aim at the prediction of complex architecture given detailed structures of its constituents. They are becoming an increasingly important tool in the field of macromolecular assemblies, complementing particularly demanding protein-nucleic acids X ray crystallography and providing means for the refinement and integration of low resolution data coming from rapidly advancing methods such as cryoelectron microscopy. RESULTS: We present a new coarse-grained force field suitable for protein-DNA docking. The force field is an extension of previously developed parameter sets for protein-RNA and protein-protein interactions. The docking is based on potential energy minimization in translational and orientational degrees of freedom of the binding partners. It allows for fast and efficient systematic search for native-like complex geometry without any prior knowledge regarding binding site location. CONCLUSIONS: We find that the force field gives very good results for bound docking. The quality of predictions in the case of unbound docking varies, depending on the level of structural deviation from bound geometries. We analyze the role of specific protein-DNA interactions on force field performance, both with respect to complex structure prediction, and the reproduction of experimental binding affinities. We find that such direct, specific interactions only partially contribute to protein-DNA recognition, indicating an important role of shape complementarity and sequence-dependent DNA internal energy, in line with the concept of indirect protein-DNA readout mechanism.  相似文献   

5.
A protein-protein docking approach has been developed based on a reduced protein representation with up to three pseudo atoms per amino acid residue. Docking is performed by energy minimization in rotational and translational degrees of freedom. The reduced protein representation allows an efficient search for docking minima on the protein surfaces within. During docking, an effective energy function between pseudo atoms has been used based on amino acid size and physico-chemical character. Energy minimization of protein test complexes in the reduced representation results in geometries close to experiment with backbone root mean square deviations (RMSDs) of approximately 1 to 3 A for the mobile protein partner from the experimental geometry. For most test cases, the energy-minimized experimental structure scores among the top five energy minima in systematic docking studies when using both partners in their bound conformations. To account for side-chain conformational changes in case of using unbound protein conformations, a multicopy approach has been used to select the most favorable side-chain conformation during the docking process. The multicopy approach significantly improves the docking performance, using unbound (apo) binding partners without a significant increase in computer time. For most docking test systems using unbound partners, and without accounting for any information about the known binding geometry, a solution within approximately 2 to 3.5 A RMSD of the full mobile partner from the experimental geometry was found among the 40 top-scoring complexes. The approach could be extended to include protein loop flexibility, and might also be useful for docking of modeled protein structures.  相似文献   

6.
Deciphering the whole network of protein interactions for a given proteome (‘interactome’) is the goal of many experimental and computational efforts in Systems Biology. Separately the prediction of the structure of protein complexes by docking methods is a well‐established scientific area. To date, docking programs have not been used to predict interaction partners. We provide a proof of principle for such an approach. Using a set of protein complexes representing known interactors in their unbound form, we show that a standard docking program can distinguish the true interactors from a background of 922 non‐redundant potential interactors. We additionally show that true interactions can be distinguished from non‐likely interacting proteins within the same structural family. Our approach may be put in the context of the proposed ‘funnel‐energy model’; the docking algorithm may not find the native complex, but it distinguishes binding partners because of the higher probability of favourable models compared with a collection of non‐binders. The potential exists to develop this proof of principle into new approaches for predicting interaction partners and reconstructing biological networks.  相似文献   

7.
Protein-protein docking programs can give valuable insights into the structure of protein complexes in the absence of an experimental complex structure. Web interfaces can facilitate the use of docking programs by structural biologists. Here, we present an easy web interface for protein-protein docking with the ATTRACT program. While aimed at nonexpert users, the web interface still covers a considerable range of docking applications. The web interface supports systematic rigid-body protein docking with the ATTRACT coarse-grained force field, as well as various kinds of protein flexibility. The execution of a docking protocol takes up to a few hours on a standard desktop computer.  相似文献   

8.
Proteins ensure their biological functions by interacting with each other. Hence, characterising protein interactions is fundamental for our understanding of the cellular machinery, and for improving medicine and bioengineering. Over the past years, a large body of experimental data has been accumulated on who interacts with whom and in what manner. However, these data are highly heterogeneous and sometimes contradictory, noisy, and biased. Ab initio methods provide a means to a “blind” protein-protein interaction network reconstruction. Here, we report on a molecular cross-docking-based approach for the identification of protein partners. The docking algorithm uses a coarse-grained representation of the protein structures and treats them as rigid bodies. We applied the approach to a few hundred of proteins, in the unbound conformations, and we systematically investigated the influence of several key ingredients, such as the size and quality of the interfaces, and the scoring function. We achieved some significant improvement compared to previous works, and a very high discriminative power on some specific functional classes. We provide a readout of the contributions of shape and physico-chemical complementarity, interface matching, and specificity, in the predictions. In addition, we assessed the ability of the approach to account for protein surface multiple usages, and we compared it with a sequence-based deep learning method. This work may contribute to guiding the exploitation of the large amounts of protein structural models now available toward the discovery of unexpected partners and their complex structure characterisation.  相似文献   

9.
RNA molecules can adopt stable secondary and tertiary structures, which are essential in mediating physical interactions with other partners such as RNA binding proteins (RBPs) and in carrying out their cellular functions. In vivo and in vitro experiments such as RNAcompete and eCLIP have revealed in vitro binding preferences of RBPs to RNA oligomers and in vivo binding sites in cells. Analysis of these binding data showed that the structure properties of the RNAs in these binding sites are important determinants of the binding events; however, it has been a challenge to incorporate the structure information into an interpretable model. Here we describe a new approach, RNANetMotif, which takes predicted secondary structure of thousands of RNA sequences bound by an RBP as input and uses a graph theory approach to recognize enriched subgraphs. These enriched subgraphs are in essence shared sequence-structure elements that are important in RBP-RNA binding. To validate our approach, we performed RNA structure modeling via coarse-grained molecular dynamics folding simulations for selected 4 RBPs, and RNA-protein docking for LIN28B. The simulation results, e.g., solvent accessibility and energetics, further support the biological relevance of the discovered network subgraphs.  相似文献   

10.
Modeling protein flexibility constitutes a major challenge in accurate prediction of protein-ligand and protein-protein interactions in docking simulations. The lack of a reliable method for predicting the conformational changes relevant to substrate binding prevents the productive application of computational docking to proteins that undergo large structural rearrangements. Here, we examine how coarse-grained normal mode analysis has been advantageously applied to modeling protein flexibility associated with ligand binding. First, we highlight recent studies that have shown that there is a close agreement between the large-scale collective motions of proteins predicted by elastic network models and the structural changes experimentally observed upon ligand binding. Then, we discuss studies that have exploited the predicted soft modes in docking simulations. Two general strategies are noted: pregeneration of conformational ensembles that are then utilized as input for standard fixed-backbone docking and protein structure deformation along normal modes concurrent to docking. These studies show that the structural changes apparently "induced" upon ligand binding occur selectively along the soft modes accessible to the protein prior to ligand binding. They further suggest that proteins offer suitable means of accommodating/facilitating the recognition and binding of their ligand, presumably acquired by evolutionary selection of the suitable three-dimensional structure.  相似文献   

11.
Müller W  Sticht H 《Proteins》2007,67(1):98-111
In this work, we developed a protein-specifically adapted scoring function and applied it to the reranking of protein-protein docking solutions generated with a conventional docking program. The approach was validated using experimentally determined structures of the bacterial HPr-protein in complex with four structurally nonhomologous binding partners as an example. A sufficiently large data basis for the generation of protein-specifically adapted pair potentials was generated by modeling all orthologous complexes for each type of interaction resulting in a total of 224 complexes. The parameters for potential generation were systematically varied and resulted in a total of 66,132 different scoring functions that were tested for their ability of successful reranking of 1000 docking solutions generated from modeled structures of the unbound binding partners. Parameters that proved critical for the generation of good scoring functions were the distance cutoff used for the generation of the pair potential, and an additional cutoff that allows a proper weighting of conserved and nonconserved contacts in the interface. Compared to the original scoring function, application of this novel type of scoring functions resulted in a significant accumulation of acceptable docking solutions within the first 10 ranks. Depending on the type of complex investigated one to five acceptable complex geometries are found among the 10 highest-ranked solutions and for three of the four systems tested, an acceptable solution was placed on the first rank.  相似文献   

12.
Interfacial water molecules play an important role in many aspects of protein–DNA specificity and recognition. Yet they have been mostly neglected in the computational modeling of these complexes. We present here a solvated docking protocol that allows explicit inclusion of water molecules in the docking of protein–DNA complexes and demonstrate its feasibility on a benchmark of 30 high-resolution protein–DNA complexes containing crystallographically-determined water molecules at their interfaces. Our protocol is capable of reproducing the solvation pattern at the interface and recovers hydrogen-bonded water-mediated contacts in many of the benchmark cases. Solvated docking leads to an overall improvement in the quality of the generated protein–DNA models for cases with limited conformational change of the partners upon complex formation. The applicability of this approach is demonstrated on real cases by docking a representative set of 6 complexes using unbound protein coordinates, model-built DNA and knowledge-based restraints. As HADDOCK supports the inclusion of a variety of NMR restraints, solvated docking is also applicable for NMR-based structure calculations of protein–DNA complexes.  相似文献   

13.
14.
The last 3 rounds (3-5) of CAPRI included a wide range of docking targets. Several targets were especially challenging, since they involved large-scale movements and symmetric rearrangement, while others were based on homology models. We have approached the targets with a variety of geometry-based docking algorithms that include rigid docking, symmetric docking, and flexible docking with symmetry constraints. For all but 1 docking target, we were able to submit at least 1 acceptable quality prediction. Here, we detail for each target the prediction methods used and the specific biological data employed, and supply a retrospective analysis of the results. We highlight the advantages of our techniques, which efficiently exploit the geometric shape complementarity properties of the interaction. These enable them to run only few minutes on a standard PC even for flexible docking, thus proving their scalability toward computational genomic scale experiments. We also outline the major required enhancements, such as the introduction of side-chain position refinement and the introduction of flexibility for both docking partners.  相似文献   

15.
May A  Zacharias M 《Proteins》2007,69(4):774-780
A reduced protein model combined with a systematic docking approach has been employed to predict protein-protein complex structures in CAPRI rounds 6-11. The docking approach termed ATTRACT is based on energy minimization in translational and rotational degrees of freedom of one protein with respect to the second protein starting from many thousand initial protein partner placements. It also allows for approximate inclusion of global flexibility of protein partners during systematic docking by conformational relaxation of the partner proteins in precalculated soft collective backbone degrees of freedom. We have submitted models for six targets, achieved acceptable docking solutions for two targets, and predicted >20% correct contacts for five targets. Possible improvements of the docking approach in particular at the scoring and refinement steps are discussed.  相似文献   

16.
Tetraspanin uroplakins (UPs) Ia and Ib, together with their single-spanning transmembrane protein partners UP II and IIIa, form a unique crystalline 2D array of 16-nm particles covering almost the entire urothelial surface. A 6 A-resolution cryo-EM structure of the UP particle revealed that the UP tetraspanins have a rod-shaped structure consisting of four closely packed transmembrane helices that extend into the extracellular loops, capped by a disulfide-stabilized head domain. The UP tetraspanins form the primary complexes with their partners through tight interactions of the transmembrane domains as well as the extracellular domains, so that the head domains of their tall partners can bridge each other at the top of the heterotetramer. The secondary interactions between the primary complexes and the tertiary interaction between the 16-nm particles contribute to the formation of the UP tetraspanin network. The rod-shaped tetraspanin structure allows it to serve as stable pilings in the lipid sea, ideal for docking partner proteins to form structural/signaling networks.  相似文献   

17.
Palmer DS  Jensen F 《Proteins》2011,79(10):2778-2793
We report the development of a method to improve the sampling of protein conformational space in molecular simulations. It is shown that a principal component analysis of energy-weighted normal modes in Cartesian coordinates can be used to extract vectors suitable for describing the dynamics of protein substructures. The method can operate with either atomistic or user-defined coarse-grained models of protein structure. An implicit reverse coarse-graining allows the dynamics of all-atoms to be recovered when a coarse-grained model is used. For an external test set of four proteins, it is shown that the new method is more successful than normal mode analysis in describing the large-scale conformational changes observed on ligand binding. The method has potential applications in protein-ligand and protein-protein docking and in biasing molecular dynamics simulations.  相似文献   

18.
Critical Assessment of PRediction of Interactions (CAPRI) rounds 37 through 45 introduced larger complexes, new macromolecules, and multistage assemblies. For these rounds, we used and expanded docking methods in Rosetta to model 23 target complexes. We successfully predicted 14 target complexes and recognized and refined near-native models generated by other groups for two further targets. Notably, for targets T110 and T136, we achieved the closest prediction of any CAPRI participant. We created several innovative approaches during these rounds. Since round 39 (target 122), we have used the new RosettaDock 4.0, which has a revamped coarse-grained energy function and the ability to perform conformer selection during docking with hundreds of pregenerated protein backbones. Ten of the complexes had some degree of symmetry in their interactions, so we tested Rosetta SymDock, realized its shortcomings, and developed the next-generation symmetric docking protocol, SymDock2, which includes docking of multiple backbones and induced-fit refinement. Since the last CAPRI assessment, we also developed methods for modeling and designing carbohydrates in Rosetta, and we used them to successfully model oligosaccharide-protein complexes in round 41. Although the results were broadly encouraging, they also highlighted the pressing need to invest in (a) flexible docking algorithms with the ability to model loop and linker motions and in (b) new sampling and scoring methods for oligosaccharide-protein interactions.  相似文献   

19.
Large-scale analyses of protein-protein interactions based on coarse-grain molecular docking simulations and binding site predictions resulting from evolutionary sequence analysis, are possible and realizable on hundreds of proteins with variate structures and interfaces. We demonstrated this on the 168 proteins of the Mintseris Benchmark 2.0. On the one hand, we evaluated the quality of the interaction signal and the contribution of docking information compared to evolutionary information showing that the combination of the two improves partner identification. On the other hand, since protein interactions usually occur in crowded environments with several competing partners, we realized a thorough analysis of the interactions of proteins with true partners but also with non-partners to evaluate whether proteins in the environment, competing with the true partner, affect its identification. We found three populations of proteins: strongly competing, never competing, and interacting with different levels of strength. Populations and levels of strength are numerically characterized and provide a signature for the behavior of a protein in the crowded environment. We showed that partner identification, to some extent, does not depend on the competing partners present in the environment, that certain biochemical classes of proteins are intrinsically easier to analyze than others, and that small proteins are not more promiscuous than large ones. Our approach brings to light that the knowledge of the binding site can be used to reduce the high computational cost of docking simulations with no consequence in the quality of the results, demonstrating the possibility to apply coarse-grain docking to datasets made of thousands of proteins. Comparison with all available large-scale analyses aimed to partner predictions is realized. We release the complete decoys set issued by coarse-grain docking simulations of both true and false interacting partners, and their evolutionary sequence analysis leading to binding site predictions. Download site: http://www.lgm.upmc.fr/CCDMintseris/  相似文献   

20.
Characterizing the nature of interaction between proteins that have not been experimentally cocrystallized requires a computational docking approach that can successfully predict the spatial conformation adopted in the complex. In this work, the Hydropathic INTeractions (HINT) force field model was used for scoring docked models in a data set of 30 high‐resolution crystallographically characterized “dry” protein–protein complexes and was shown to reliably identify native‐like models. However, most current protein–protein docking algorithms fail to explicitly account for water molecules involved in bridging interactions that mediate and stabilize the association of the protein partners, so we used HINT to illuminate the physical and chemical properties of bridging waters and account for their energetic stabilizing contributions. The HINT water Relevance metric identified the “truly” bridging waters at the 30 protein–protein interfaces and we utilized them in “solvated” docking by manually inserting them into the input files for the rigid body ZDOCK program. By accounting for these interfacial waters, a statistically significant improvement of ~24% in the average hit‐count within the top‐10 predictions the protein–protein dataset was seen, compared to standard “dry” docking. The results also show scoring improvement, with medium and high accuracy models ranking much better than incorrect ones. These improvements can be attributed to the physical presence of water molecules that alter surface properties and better represent native shape and hydropathic complementarity between interacting partners, with concomitantly more accurate native‐like structure predictions. Proteins 2014; 82:916–932. © 2013 Wiley Periodicals, Inc.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号