首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Glutamine synthetase (GS) from brain of Clarias batrachus is purified to about 42-fold and characterized at optimum pH and temperature with respect to its kinetic parameters. Values for apparent Michaelis constant of the enzyme for L-glutamine, hydroxylamine and ADP are 50, 62.5 and 0.833 mM respectively. The very low apparent Km for ADP may be specially related to the expression of GS action under high energy bond and also be evidenced by the requirement of enzyme for a high ionic strength of the ADP. The study is extended by examining the effect of various amino acids and metabolites on GS activity in order to gain further understanding of the changes in kinetics and regulation. It reveals that whereas uridine monophosphate and glutamate act competitively with respect to L-glutamine, carbamylphosphate and asparagine act non-competitively. GS activity is markedly inhibited by leucine, aspartic acid and AMP but not by lysine. ATP and methionine sulfoximine behaved as potent inhibitors of the enzyme in vitro. It is suggested that the teleostean GS has most of the properties similar to those reported for mammalian and avian glutamine synthetases. However, it is proposed that kinetic regulation of this enzyme may play a significant role in ammonia detoxication and rate of formation of glutamine-derived neurotransmitters in fish brain.  相似文献   

2.
We assessed the possible upregulation of glutamine synthetase (GS) and typical 'fish type' carbamyl phosphate synthetase III (CPS III) in detoxification of ammonia in different tissues of the walking catfish (Clarias batrachus) during exposure to 25 mM NH(4)Cl for 7 days. Exogenous ammonia led to an increase in ammonia and urea concentrations in different tissues. The results revealed the presence of relatively high levels of GS activity in the brain, liver and kidney, unexpectedly, also in the muscle, and even higher levels in the intestine and stomach. Exposure to high external ammonia (HEA) caused significant increase of activities of GS, CPS III and CPS I-like enzymes, accompanied with the upregulation of GS and CPS III enzyme proteins in different tissues. Exposure to HEA also led to a sharp rise of plasma cortisol level, suggesting being one of the primary causes of upregulation of GS and CPS III enzymes activity. Liver perfusion experiments further revealed that exposure to HEA enhances the capacity of trapping ammonia to glutamine and urea by the liver of walking catfish. These results suggest that the upregulation of GS and CPS III activity in walking catfish during exposure to HEA plays critical roles to ameliorate the toxic ammonia to glutamine, and also to urea via the induced ornithine-urea cycle possibly through the involvement of cortisol.  相似文献   

3.
1. Glutamic acid showed a significant decrease during hibernation in brain cortex. This is attributed to: (a) Transformation to glutamine to detoxicate ammonia. (b) The synthesis of GABA from glutamic acid. (c) It is suggested that the enzyme GAD is active during hibernation. 2. GABA showed a significant increase in liver and brain cortex. It was absent in the blood serum. (a) The present results show that non-neural tissues contain lower GABA than neural tissues. (b) GABA may be formed locally in tissues by decarboxylation of glutamate as well as from pathways connected with tricarboxylic acid cycle. 3. Aspartic acid showed increased levels in blood serum, liver and brain cortex, the greatest increase was observed in liver. 4. A significant increase was recorded in the level of arginine in brain cortex and liver, whilst a smaller percentage increase was recorded in ornithine level. It is assumed that transformation of arginine to ornithine was depressed during hibernation.  相似文献   

4.
alpha-L-Fucosidase (alpha-L-fucoside fucohydrolase, EC 3.2.1.51) has been purified to apparent homogeneity (about 22 000-fold over the crude homogenate) from monkey brain. Values of kinetic constants for the purified enzyme were as follows: pH optimum, 5.0; Km, 0.22 mM; V, 913 mumol/mg per h. alpha-L-Fucose was a competitive inhibitor (Ki, 0.275 mM) of the enzyme. Evidence for the involvement of sulphydryl group(s) and carboxyl group containing amino acid(s) in the catalytic process is presented. The purified enzyme was a tetramer of molecular weight of 285 000 of identical subunits of 73 500 held together by non-covalent forces. Gel filtration studies revealed the presence of three molecular forms of the activity in the purified preparation which appeared to be the tetramer, dimer and monomer. The existence of three types of activities was also aupported by a triphasic heat inactivation profile of the enzyme at 50 or 55 degrees C and the distinctly different pH activity profiles of the differentially heat-inactivated enzymes. Immunodiffusion studies using antibody developed against purified monkey brain alpha-L-fucosidase showed that the monkey brain enzyme had only partial immunological identity with the enzymes from the non-neural tissues of monkey as well as the human and rat liver and the rat brain. However, the monkey brain and liver enzymes appeared to be similar to the human brain and liver enzymes, respectively.  相似文献   

5.
We evaluated the effect of dietary starch level on growth performance, feed utilization, whole-body composition and activity of selected key enzymes of intermediary metabolism in gilthead sea bream juveniles reared at 18 and 25 degrees C. A diet was formulated to contain 48% crude protein, 12% lipids and 30% gelatinized maize starch (diet 30GS). Two other diets were formulated to include the same level of ingredients as diet 30GS except for the gelatinized starch, which was included at 20% (diet 20GS) or 10% (diet 10GS). No adjustment to diet composition was otherwise made. Each diet was fed to triplicate groups of gilthead sea bream (30 g initial mass) for 8 weeks, on a pair-feeding scheme. The higher temperature improved growth performance but the opposite was true for feed efficiency and protein efficiency ratio. Independently of temperature, growth performance, feed efficiency and protein efficiency ratio were lower in fish fed diet 30GS. No effect of temperature or dietary starch level on whole-body composition was noticed. Hepatosomatic index and liver glycogen were higher at 18 degrees C and, within each temperature, in fish fed diet 30GS. Glycemia was not affected by temperature, but was lower in fish fed diet 10GS. Data on enzyme activities showed that increasing water temperature enhances liver glucokinase (GK) and pyruvate kinase (PK) activities, suggesting that gilthead sea bream is more apt to use dietary starch at higher temperatures. No effect of temperature was noticed on hexokinase (HK), fructose-1,6-bisphosphatase (FBPase), glucose-6-phosphate dehydrogenase (G6PD) and glutamate dehydrogenase (GDH) activities. Dietary starch enhanced PK and FBPase activities while depressed GDH activity, suggesting a lack of significant regulation of hepatic glucose utilization and production in this species. HK, GK and G6PD activities were unaffected by dietary composition. Irrespectively of water temperature, gelatinized starch may be included up to 20% in diets for gilthead sea bream juveniles; at higher dietary levels, growth and efficiency of feed utilization are depressed.  相似文献   

6.
1. The maximum velocity (Vmax) and apparent Michaelis constant (Km) of brain and liver monoamine oxidase (MAO) in goldfish were different in fish acclimated to 22 degrees C and to 7 degrees C ambient temperature. 2. In brain, Vmax and Km were dependent upon incubation temperature, but both parameters were lower in 7 degrees C, adapted fish over most of the incubation temperature range. 3. The values obtained for Km showed a plateau at incubation temperatures at and below 25 degrees C for warm water fish, and at and below 20 degrees C for cold water fish. The activation energy of brain MAO was lower in fish adapted to the colder water. 4. These results show that goldfish MAO displays changes in functional activity in response to a change in environmental temperature. Apparently the purpose of this adaptation is to compensate for a reduction in enzyme concentration.  相似文献   

7.
Exposure of fish to alkaline conditions inhibits the rate of ammonia excretion, leading to ammonia accumulation and toxicity. The purpose of this study was to determine the role of ureogenesis via the urea cycle, to avoid the accumulation of ammonia to a toxic level during chronic exposure to alkaline conditions, for the air-breathing walking catfish, Clarias batrachus, where a full complement of urea cycle enzyme activity has been documented. The walking catfish can survive in water with a pH up to 10. At a pH of 10 the ammonia excretion rate by the walking catfish decreased by approximately 75% within 6 h. Although there was a gradual improvement of ammonia excretion rate by the alkaline-exposed fish, the rate remained 50% lower, even after 7 days. This decrease of ammonia excretion was accompanied by a significant accumulation of ammonia in plasma and body tissues (except in the brain). Urea-N excretion for alkaline-exposed fish increased 2.5-fold within the first day, which was maintained until day 3 and was then followed by a slight decrease to maintain a 2-fold increase in the urea-N excretion rate, even after 7 days. There was also a higher accumulation of urea in plasma and other body tissues (liver, kidney, muscle and brain). The activity of glutamine synthetase and three enzymes operating in the urea cycle (carbamyl phosphate synthetase, argininosuccinate synthetase, argininosuccinate lyase) increased significantly in hepatic and extra-hepatic tissue, such as the kidney and muscle in C. batrachus, during exposure to alkaline water. A significant increase in plasma lactate concentration noticed during alkaline exposure possibly helped in the maintenance of the acid-base balance. It is apparent that the stimulation of ureogenesis via the induced urea cycle is one of the major physiological strategies adopted by the walking catfish (C. batrachus) during chronic exposure to alkaline water, to avoid the in vivo accumulation of ammonia to a toxic level in body tissues and for the maintenance of pH homeostasis.  相似文献   

8.
Polyacrylamide gel electrophoresis was used to investigate the relation of the soluble thiamine triphosphatase activity of various rat tissues to other phosphatases. This technique separated the thiamine triphosphatase of rat brain, heart, kidney, liver, lung, muscle and spleen from alkaline phosphatase (EC 3.1.3.1), acid phosphatase (EC 3.1.3.2) and other nonspecific phosphatase activities. In contrast, the hydrolytic activity for thiamine triphosphate in rat intestine moved identically with alkaline phosphatase in gel electrophoresis. Thiamine triphosphatase from rat liver and brain was also separated from alkaline phosphatase and acid phosphatase by gel chromatography on Sephadex G-100. This gave an apparent molecular weight of about 30,000 and a Stokes radius of 2.5 nanometers for brain and liver thiamine triphosphatase. The intestinal thiamine triphosphatase activity of the rat was eluted from the Sephadex G-100 column as two separate peaks (with apparent molecular weights of over 200,000 and 123,000) which exactly corresponded to the peaks of alkaline phosphatase. The isoelectric point (pI) of the brain thiamine triphosphatase was 4.6 (4 degrees C). The partially purified thiamine triphosphatase from brain and liver was highly specific for thiamine triphosphate. The results suggest that, apart from the intestine, the rat tissues studied contain a specific enzyme, thiamine triphosphatase (EC 3.6.1.28). The specific enzyme is responsible for most of the thiamine triphosphatase activity in these tissues. Rat intestine contains a high thiamine triphosphatase activity but all of it appears to be due to alkaline phosphatase.  相似文献   

9.
Rainbow smelt (Osmerus mordax) were maintained in a long term acclimation study to elucidate temperature effects on the accumulation of trimethylamine oxide (TMAO) and to determine if the activity of trimethylamine oxidase (TMAoxi) plays a role in modulating the seasonally variable levels of TMAO. In the same experiment, the TMAO content was determined for several tissues at varying plasma TMAO concentrations. TMAO accumulation begins at 5-7 degrees C, well above that which might be normally associated with an antifreeze response. The plasma concentration reached a plateau of 20 mM as temperatures reached 0 degrees C. Plasma TMAO concentration drops to pre-accumulation levels, less than 5 mM, when fish are held at elevated temperature (8-11 degrees C) and increases when fish are chilled below ambient seawater temperatures. However, despite temperatures near or below 0 degrees C, plasma TMAO decreases after the winter season. Changes in TMAoxi activity do not correlate with TMAO levels, suggesting that the activity of this enzyme does not play a key role in regulating TMAO concentrations in smelt. For the first time in any teleost fish, tissue TMAO contents in liver, kidney, brain, and intestine were found to strongly correlate with plasma TMAO concentrations. For these tissues, the intracellular and extracellular concentration of TMAO appears to be approximately equal. Conversely, the heart and white muscle accumulate TMAO, and in the case of white muscle, intracellular concentration is maintained at a constant level of approximately 35 mmol/kg, despite fluctuating plasma concentrations over a range from 0 to over 25 mM.  相似文献   

10.
1. The effect of storage conditions of rainbow trout (Salmo gairdneri) liver on monooxygenase and conjugation enzyme activities was studied. Fish livers or whole fish were frozen and stored for various periods of time at -4, -20 or -80 degrees C. 2. Freezing the whole fish at -20 degrees C affected the biotransformation enzyme activities dramatically. The loss of monooxygenase activity exceeded up to one-tenth of the initial rate in 17 days. UDP-Glucuronosyltransferase activity increased 50%. Glutathione S-transferase appeared to be the most durable enzyme. 3. When the whole fish were stored in an ice-bath at -4 degrees C for up to 24 hr the activities measured decreased only half of that when frozen for 3 days. 4. When it is impossible to freeze the tissues studied in liquid nitrogen the activities are best preserved when whole, decapitated, bled fish are kept in an ice-bath for less than 24 hr.  相似文献   

11.
Calcium activated neutral proteinase (mcalpain) activity was determined in brain and other tissue of rat. More than 60% of the brain mcalpain activity was present in the particulate fraction while only 30% was in cytosol. In contrast, particulate fractions of liver, kidney, muscle, and heart contained about 8–12% of tissue mcalpain activity while 88% was present in cytosol. Removal of the endogenous inhibitor calpastatin increased the tissue mcalpain activity severalfold. Triton X-100 and deoxycholate (DOC) stimulated the neural calpain activity by ten-fold while activity in non-neural tissue was unaffected. Incubation with other detergents, e.g. Triton N-57 and thioglucopyranoside, stimulated brain calpain activity five-fold while Brij-35 did not have any effect. Sodiumdodecylsulphate (SDS), on the other hand, inhibited the enzyme activity. Brain contained the lowest calpain activity compared to non-neural tissue. The calpain activity in muscle, kidney and heart was three-fold greater than liver. Immunoblot identification of the enzyme revealed that calpain was predominantly in the particulate fraction and less in cytosol of brain while it was present mainly in cytosol and less in the pellet fractions of non-neural tissue.  相似文献   

12.
Glutamine synthetase (GS, E.C. 6.3.1.2) is a ubiquitous and highly compartmentalized enzyme that is critically involved in several metabolic pathways in the brain, including the glutamine-glutamate-GABA cycle and detoxification of ammonia. GS is normally localized to the cytoplasm of most astrocytes, with elevated concentrations of the enzyme being present in perivascular endfeet and in processes close to excitatory synapses. Interestingly, an increasing number of studies have indicated that the expression, distribution, or activity of brain GS is altered in several brain disorders, including Alzheimer’s disease, schizophrenia, depression, suicidality, and mesial temporal lobe epilepsy (MTLE). Although the metabolic and functional sequelae of brain GS perturbations are not fully understood, it is likely that a deficiency in brain GS will have a significant biological impact due to the critical metabolic role of the enzyme. Furthermore, it is possible that restoration of GS in astrocytes lacking the enzyme could constitute a novel and highly specific therapy for these disorders. The goals of this review are to summarize key features of mammalian GS under normal conditions, and discuss the consequences of GS deficiency in brain disorders, specifically MTLE.  相似文献   

13.
Preincubation of broken cell preparations from a variety of tissues and cell cultures resulted in an apparent increase in the level of 3-hydroxy-3-methylglutaryl-CoA reductase activity. However, apparent activation of the reductase in mouse liver, hepatomas and primary liver cell cultures was attributed largely to the loss, during the preincubation period, of an interfering enzyme, 3-hydroxy-3-methylglutaryl-CoA lyase. Among non hepatic cells and tissues (which did not contain appreciable lyase activity) the proportion of latent reductase was high in sonicates of fetal brain and in L cells and was independent of the level of total enzyme activity present. Activation of the reductase was blocked by hydroxymethylglutaryl-CoA and NADPH as well as by KF so that activation did not occur under the conditions of the enzyme assay. The enzyme was activated slowly at 4 degrees C, so that partial activation of the latent form occurred during isolation of the microsomal fraction by differential centrifugation. The reductase present in sonicates of cells with either a high or low proportion of the latent enzyme was inactivated by incubation with ATP and Mg2+. Suppression of reductase activity in L cell cultures by treatment with 25-hydroxycholesterol and an age-related decline in brain enzyme activity did not involve reversible conversion of the reductase to an inactive form.  相似文献   

14.
C K Lin  A Dunn 《Life sciences》1989,45(25):2443-2450
Hypophysectomy diminishes rat liver glutamine synthetase (GS) activity and growth hormone (GH) administration restores this activity to normal levels; brain GS is unaffected. We have now investigated the effects of long-term hypophysectomy (45-day) and GH treatment on the GS mass (amount of enzyme) and turnover in rat liver and brain. Labeled GS was isolated by immunoprecipitation at intervals between one and six days after pulse administration of [U-14C] leucine and the GS half-life (t1/2) was determined. The GS mass was obtained by immunoassay and by calculation using the specific activity of purified GS. GS turnover was calculated by multiplying the GS mass by the first-order rate constant of degradation (kd). During the time course of each experiment, the GS mass did not change, indicating that in each of the three hormonal states studied, a steady state existed. Hypophysectomy increased the t1/2 of hepatic GS from 3.8 to 8.8 days and decreased GS turnover from 0.38 to 0.1 microgram/100 g body wt/day; the GH regimen used restored the turnover to above normal levels, 0.6 microgram/100 g body wt/day. The GS mass decreased from 2.0 to 1.2 micrograms/100 g body wt and GH restored the GS mass to normal levels. The brain enzyme was not affected by hypophysectomy or GH.  相似文献   

15.
The evolution of uricoteley as a mechanism for hepatic ammonia detoxication in vertebrates required targeting of glutamine synthetase (GS) to liver mitochondria in the sauropsid line of descent leading to the squamate reptiles and archosaurs. Previous studies have shown that in birds and crocodilians, sole survivors of the archosaurian line, hepatic GS is translated without a transient, N-terminal targeting signal common to other mitochondrial matrix proteins. To identify a putative internal targeting sequence in the avian enzyme, the amino acid sequence of chicken liver GS was derived by a combination of sequencing of cloned cDNA, direct sequencing of mRNA, and sequencing of polymerase chain reaction (PCR) products amplified from reverse-transcribed mRNA. Analysis of the first 20 or so N-terminal amino acids of the derived sequence for the chicken enzyme shows that they are devoid of acidic amino acids, contain several hydroxy amino acids, and can be predicted to form a positively charged, amphipathic helix, all of which are characteristic properties of mitochondrial targeting signals. A comparison of the N-terminus of chicken GS with the N-termini of cytosolic mammalian GSs indicates that at least three amino acid replacements may have been responsible for converting the N-terminus of the cytosolic mammalian enzyme into a mitochondrial targeting signal. Two of these, His15 and Lys19, result in additional positive charges, as well as in changes in hydrophilicity. Both could have resulted from third-base-codon substitutions. A third replacement, Ala12, may contribute to the helicity of the N-terminus of the chicken enzyme. The N-terminus of the cytosolic chicken brain GS (positions 1-36) was found to be identical to that of the liver enzyme. The complete sequence of chicken retinal GS is also identical to that of the liver enzyme. GS is coded by a single gene in birds, so these sequence data suggest that, unlike the situation in other tissue-specific compartmental isozymes, differential targeting of avian GS to the mitochondrial or cytosolic compartments is not dependent on the sequence of the primary translation product of its mRNA but may involve some other tissue-specific factor(s).  相似文献   

16.
17.
The African sharptooth catfish Clarias gariepinus lives in freshwater, is an obligatory air breather, and can survive on land during drought. The objective of this study was to elucidate how C. gariepinus defends against ammonia toxicity when exposed to terrestrial conditions. During 4 d of aerial exposure, there was no accumulation of urea in its tissues, and the rate of urea excretion remained low. Thus, exposure to terrestrial conditions for 4 d did not induce ureogenesis or ureotely in C. gariepinus. Volatilization of NH(3) was not involved in excreting ammonia during aerial exposure. In addition, there were no changes in levels of alanine in the muscle, liver, and plasma of C. gariepinus; nor were there any changes in the glutamine levels in these tissues. However, there were extraordinarily high levels of ammonia in the muscle (14 micromol g(-1)), liver (18 micromol g(-1)), and brain (11 micromol g(-1)) of fish exposed to terrestrial conditions for 4 d. This is the first report on a fish adopting high tolerance of ammonia in cells and tissues as the single major strategy to defend against ammonia toxicity during aerial exposure. At present, it is uncertain how C. gariepinus tolerates such high levels of ammonia, especially in its brain, but it can be concluded that, contrary to previous reports on two air-breathing catfishes (Clarias batrachus and Heteropneustes fossilis) from India, C. gariepinus does not detoxify ammonia to urea or free amino acids on land.  相似文献   

18.
A comparative study of glutamate dehydrogenase (GLDH 1.4.1.2) and glutamine synthetase (GS 6.3.1.2.) activity in liver, kidney and spleen homogenates from cattle, sheep, pigs and chickens showed that chicken liver contained on an average 3.5%, pig liver 8.3% and bovine liver 45.6% of the glutamate dehydrogenase activity present in sheep liver. Relatively low trace activity was found in the spleen and kidneys, except for the renal cortex of cattle (32% of activity in the liver). GS activity was the highest in chicken liver; in pigs it amounted to 33.40%, in cattle to 24.2% and in sheep to 19.7% of this activity. No marked interspecies differences were found in the values in the kidneys and spleen. It can be concluded from the results that the relatively high GLDH activity in the liver of ruminants compared with pigs and chicken is associated with the greater ability of ruminants to utilize ammonia. The higher GS activity and lower GLDH activity in chicken liver can be attributed to higher uric acid synthesis from ammonia via glutamine and purine bases and the lower ability of birds to utilize ammonia for protein synthesis. The presence of alanine dehydrogenase was not demonstrated in chicken liver, where the maximum oxidation of NADH after the addition to pyruvate and ammonia substrate was found.  相似文献   

19.
We have cloned the murine glutamine synthetase (GS) gene and measured GS enzyme activity and mRNA in five tissues (retina, brain, liver, kidney, and skeletal muscle) during perinatal development. Retinal GS enzyme activity increases 200-fold between Day 1 and Day 21 and is accompanied by an increase in the level of GS mRNA; developmental regulation in other tissues is much less dramatic. Based on Southern blotting analysis, a single GS gene gives rise to the tissue-specific patterns of GS mRNA expression. The increase in murine retinal GS observed during perinatal development is similar in magnitude to that observed in the chicken retina just prior to hatching. In the embryonic chicken retina, glucocorticoid hormones mediate a large increase in the level of GS mRNA. However, although glucocorticoids induce a 12-fold increase in GS mRNA in murine skeletal muscle, expression of the retinal enzyme and mRNA is only modestly glucocorticoid-inducible in the mouse. Therefore, despite the hormonal responsiveness of the murine GS gene, it is not likely that glucocorticoids are important physiological modulators of the developmental rise in murine retinal GS.  相似文献   

20.
Abstract— The enzymes catalysing ethanol metabolism, alcohol dehydrogenase (EC 1.l.1.1) and aldehyde dehydrogenase (EC 1.2.1.3), were assayed in a variety of neural and somatic tissues of the rat, the human counterparts of which are known to be vulnerable to excessive ethanol. The activity of alcohol dehydrogenase was assayed by the coupled oxidation of ethanol and reduction of lactaldehyde, a method which we have recently found to be sufficiently sensitive and specific to measure the relatively low levels of activity in whole brain. Detectable activities of these enzymes were found in peripheral nerve, skeletal muscle, retina, optic nerve and various regions of brain, as well as in a variety of non-neural tissues. The levels of the enzymic activities in all tissues were markedly lower than those of liver, but probably sufficient to perform a local function in the metabolism of ethanol or other endogenous substrates. The activity of alcohol dehydrogenase in the various tissues, like that of liver, was confined to the cytosol and exhibited kinetic properties and responses to inhibitors almost identical to those of the liver enzyme. We consider the results to be consistent with the hypothesis that the pathological effects of alcohol may be related, at least in part, to local mechanisms for the metabolism of alcohol.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号