首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 250 毫秒
1.
The effects of water stress on pressure differences and 14C-assimilate translocation in sieve tubes of squirting cucumber Ecballium elaterium A. Rich were studied. Water stress was induced by transfer of plants from culture solution to a polyethylene glycol 6,000 solution having an osmotic potential of −18.2 atm. Sieve tube turgor, turgor differences between source and sink, and translocation rate were decreased. After 260 minutes of translocation, only 19% of the total fixed 14CO2 had moved out of the leaf, compared to the control value of 62% after the same period of time. The results suggest that water stress slows translocation by lowering sieve tube turgor differences, which are essential for the pressure flow mechanism of conduction.  相似文献   

2.
Distorted phytochrome action spectra in green plants   总被引:6,自引:0,他引:6  
A. M. Jose  E. Schäfer 《Planta》1978,139(1):25-28
An evaluation was made of the extent which a Münch-type pressure flow mechanism (i.e., osmotically-generated pressure flow) might contribute to phloem transport in soybean. Estimates of sucrose concentrations in source (leaf) and sink (root) sieve tubes were obtained by a negativestaining procedure. Water potential measurements of the leaf and of the nutrient solution allowed calculation of the turgor pressures in source and sink sieve tubes. The turgor difference between source and sink sieve tubes was compared to that required to drive translocation at the observed velocity between the source and sink, as measured by [14C] photosynthate movement. Sieve-tube conductivity was calculated from the sieve-tube dimensions, assuming an essentially unobstructed pathway. In three experiments, the sucrose concentration was consistently higher in source sieve tubes (an average of 11.5%) than in sink sieve tubes (an average of 5.3%). The ratio of these values (2.3:1) agreed reasonably well with an earlier ratio for source/sink sieve tube concentrations of 1.8:1, obtained by quantitative microautoradiography. The resulting calculated turgor difference (an average of 4.1 bars) was adequate to drive a pressure flow mechanism at the observed translocation velocities (calculated to require a turgor difference of 1.2 to 4.6 bars). No other force need be presumed to be involved.This work was presented in part at a joint U.S.-Australian Conference on Transport and Transfer Processes in Plants, Canberra, Australia, December 15–20, 1975; see Fisher (1976)  相似文献   

3.
Wright JP  Fisher DB 《Plant physiology》1983,73(4):1042-1047
Severed aphid stylets were used to follow the kinetics of sieve tube turgor and osmotic pressure (π) responses following step changes in water potential applied to the cambial surface of willow (Salix exigua Nutt.) bark strips. The kinetics of the turgor response were monitored with a pressure transducer. In separate experiments, the kinetics of the π response were followed by freezing point determinations on stylet exudate. The sieve tube volumetric elastic modulus in the bark strips was about 21 bars, but may be higher in intact stems. The membrane hydraulic conductivity was about 5 × 10−3 centimeters per second per bar; several factors make it difficult to estimate its value accurately. Differences in the turgor pressure (P) and π responses, as well as the relatively more rapid initial turgor response to a water potential (ψ) change, suggested a time-dependent component in sieve tube wall elasticity.

Our observations were generally not supportive of the idea that sieve tubes might osmoregulate. However, the bark strip system may not be suitable for addressing that question.

Separate measurements of ψ, P, and π demonstrate that the relationship predicted by the fundamental cell water potential equation, ψ = P − π, is applicable within experimental error (± 0.4 bar) to sieve tube water relations.

  相似文献   

4.
The kinetic behavior of translocation profiles indicates that their shape is determined largely by the rate at which tracer enters the sieve tubes in the source leaf. Confirmation of this relationship was sought by investigating the kinetics of 14C in the immediate source pool for translocated sucrose in soybean (Glycine max L., cv. Bragg) and morning glory (Ipomea nil Roth, cv. Scarlet O'Hara) leaves. Quantitative microautoradiography was used to follow the water-soluble 14C contents of the companion cells in minor veins after pulse-labeling with 14CO2. In both morning glory and soybean, the observed kinetics in the companion cells matched reasonably well those expected from the shape of the translocation profiles.

Marked compartmentation of sucrose was evident in soybean leaves in that the specific radioactivity of total leaf sucrose was greatest immediately after labeling and quickly declined, whereas labeling in the companion cells was low at first and did not reach a maximum for about 35 minutes. In morning glory leaves, the kinetics of sucrose specific radioactivity and of companion cell-labeling more closely paralleled one another.

  相似文献   

5.
Summary Auxin activity was detected in honeydew obtained from the aphid Tuberolachnus salignus (Gmelin) feeding on willow (Salix viminalis). Active uptake of 14C-indolyl-3-acetic acid (IAA) into the sieve tubes was demonstrated by irrigating the cambial surface of willow bark with 14C-IAA solution and assaying aphid stylet exudate. When, however, 14C-IAA was applied to the peridermal tissues of the bark or to a mature leaf most of the radioactivity (collected in honeydew or stylet exudate) co-chromatographed with indolyl-3-acetyl-aspartic acid (IAAsp). The presence of IAAsp in honeydew was not affected by extraction procedure or by aphid metabolism. Honeydew obtained from willow treated with 14C-tryptophan contained only 14C-tryptophan. When 14C-IAA was applied in agar to the cut end of willow segments the radioactivity was found to move in a basipetally polar manner. The direction of movement of radioactivity in the sieve tubes, however, was found to be influenced by the proximity of the roots. Nevertheless, there was evidence that endogenous auxin in the sieve tubes does move in a predominantly basipetal direction.  相似文献   

6.
R. I. Grange  A. J. Peel 《Planta》1978,138(1):15-23
Sucrose specific mass transfer measurements were made in a translocating willow shoot (Salix viminalis L.) by a steady state labelling technique and the translocate sucrose specific activity, concentration and velocity monitored by analysis of the honeydew from two colonies of the willow aphid Tuberolachnus salignus Gmelin. The values of sucrose SMT obtained were related to the simultaneous measurements of translocate concentration and velocity and to the gradients of sucrose concentration within the stem transport path to determine if transport was a bulk flow or a diffusional analogue. Estimates of potassium ion concentration in the sieve tubes were made, using aphid honeydew, and related to the sucrose SMT measured simultaneously. Correlations were found between translocate concentration, velocity and SMT which suggested that solution flow was occurring rather than a process analogous to diffusion. Evidence was obtained that velocity of flow was a valid concept and that the measured velocity was being lowered by leakage of tracer from the sieve tubes. The analysis of potassium concentration suggested that if solution flow was occurring then potassium must be very exchangeable down the transport path. A good correlation was observed between the SMT of sucrose and the combined gradient of sucrose and potassium concentration, though this gradient was in the opposite direction to transport in some cases.Abbreviations SMT Sucrose specific mass transfer rate - SAR Specific activity ratio - OP Osmotic pressure  相似文献   

7.
We investigated the possibility of interspecific water transfer in an alfalfa (Medicago sativa L.) and maize (Zea mays L.) association. An alfalfa plant was grown through two vertically stacked plastic tubes. A 5 centimeter air gap between tubes was bridged by alfalfa roots. Five-week old maize plants with roots confined to the top tube were not watered, while associated alfalfa roots had free access to water in the bottom tube (the −/+ treatment). Additional treatments included: top and bottom tubes watered (+/+), top and bottom tubes droughted (−/−), and top tube droughted after removal of alfalfa root bridges and routine removal of alfalfa tillers (−*). Predawn leaf water potential of maize in the −/+ treatment fell to −1.5 megapascals 13 days after the start of drought; thereafter, predawn and midday potentials were maintained near −1.9 megapascals. Leaf water potentials of maize in the −/− and −* treatments declined steadily; all plants in these treatments were completely desiccated before day 50. High levels of tritium activity were detected in water extracted from both alfalfa and maize leaves after 3H2O was injected into the bottom −/+ tube at day 70 or later. Maize in the −/+ treatment was able to survive an otherwise lethal period of drought by utilizing water lost by alfalfa roots.  相似文献   

8.
Geiger DR  Saunders MA  Cataldo DA 《Plant physiology》1969,44(12):1657-1663,1665
Accumulation of translocate during steady-state labeling of photosynthate was measured in the source leaf petioles of sugar beet (Beta vulgaris L. monogerm hybrid). During an 8-hr period, 2.7% of the translocate or 0.38 μg carbon/min was accumulated per cm petiole. Material was stored mainly as sucrose and as compounds insoluble in 80% ethanol. The minimum peak velocity of translocation approached an average of 54 cm/hr as the specific activity of the 14CO2 pulse was progressively increased. The ratio of cross sectional area required for translocation to actual sieve tube area in the petiole was 1.2. A regression analysis of translocation rate versus sieve tube cross sectional area yielded a coefficient of 0.76. The specific mass transfer rate in the petiole was 1.4 g/hr cm2 phloem or 4.8 g/hr cm2 sieve tube. Histoautoradiographic studies indicated that translocation occurs through the area of phloem occupied by sieve tubes and companion cells while storage occurs in these cells plus cambium and phloem parenchyma cells. The ability of the petiole to act as a sink for translocate is consistent with the concept that storage along path tissue serves to buffer sucrose concentration in the translocate during periods of fluctuating assimilation.  相似文献   

9.
Wright JP  Fisher DB 《Plant physiology》1980,65(6):1133-1135
Turgor pressure in individual sieve tubes was measured directly by gluing capillary micromanometers over exuding aphid stylets with cyanoac-rylate adhesive. Pressures of up to 10 bars were measured in sieve tubes of Salix babylonica, with an estimated accuracy of ± 0.3 bars or better.  相似文献   

10.
Summary In tissue slices of tomato (Solanum lycopersicum L.) sieve tube membrane potentials (Em) were measured by use of glass microelectrodes. In internode discs, the potential differences (pd) of phloem cells near the cut surface fell into two distinct categories with average values of –66 and –109 mV. More distant from the cut surface the values decreased to averages of –71 and –140 mV. These pds were associated with phloem parenchyma cells and sieve tube/companion cell complexes, respectively. In petiole strips, pds were recorded from cells which were identified by iontophoretic injection of fluorescent dye. Averages in two different bathing media, were –140/–146mV, –149/–152mV, and –70/–68mV for sieve tubes, companion cells, and phloem parenchyma cells, respectively. The membrane potentials recorded from sieve tubes were transiently reduced upon sucrose addition. Reduction by CCCP and KCN was more permanent. Sieve tube Ems recovered more slowly from potassium than from sucrose-induced depolarizations. Light/ dark (L/D) responses were minute (±3 mV). The limitations of the present experimentation are evaluated with special reference to the question as whether the recorded Ems represent sieve tube membrane potentials occurring in the intact plant.Abbreviations CCCP carbonyl cyanide m-chlorophenylhydrazone - D dark(ness) - Em membrane potential - L light - LYCH Lucifer yellow CH - pd potential difference - SE standard error  相似文献   

11.
A method of measuring the water potential of stored potato tubers (Solanum tuberosum L.) was needed to investigate the relationship of bacterial soft rot in tubers to water potential. Pressure chamber measurements, while useful for tubers with functional stolons, cannot be made on stored tubers. Measurements could be made on excised tissue pieces in a hygrometer chamber and with hygrometers implanted into tubers. We report here our evaluation of these hygrometric methods using a comparison with the pressure chamber on tubers harvested with stolons intact.

In tubers of high water potential, measurements on excised tissue were as much as 0.5 megapascals lower than the pressure chamber, probably due to turgor-driven expansion of the sample when freed from constraints imposed by surrounding tissue. Good agreement (±0.05 megapascals) was found between the implanted hygrometer and the pressure chamber at potentials higher than −0.5 megapascals. At lower water potentials, both hygrometer measurements were higher than the pressure chamber. Respirational heating of the tissue contributed to the increase in the excised tissue samples, but not with the implanted hygrometers because of the hygrometer design. The osmotic pressure balanced the pressure chamber measurement of potential at −0.7 megapascals, but was too small to do so at lower potentials. At most, 25% of this discrepancy can be accounted for by dilution by apoplastic water. We believe that the pressure chamber measurement is too low at low water potentials and that the error is associated with air bubbles in the xylem. At low potentials air emerged from xylem vessels along with sap, and fewer xylem emitted sap as potentials decreased.

  相似文献   

12.
Microautoradiographs showed that [14C]sucrose taken up in the xylem of small and intermediate (longitudinal) vascular bundles of Zea mays leaf strips was quickly accumulated by vascular parenchyma cells abutting the vessels. The first sieve tubes to exhibit 14C-labeling during the [14C]sucrose experiments were thick-walled sieve tubes contiguous to the more heavily labeled vascular parenchyma cells. (These two cell types typically have numerous plasmodesmatal connections.) With increasing [14C]sucrose feeding periods, greater proportions of thick- and thin-walled sieve tubes became labeled, but few of the labeled thin-walled sieve tubes were associated with labeled companion cells. (Only the thin-walled sieve tubes are associated with companion cells.) When portions of leaf strips were exposed to 14CO2 for 5 min, the vascular parenchyma cells-regardless of their location in relation to the vessels or sieve tubes-were the most consistently labeled cells of small and intermediate bundles, and label (14C-photosynthate) appeared in a greater proportion of thin-walled sieve tubes than thick-walled sieve tubes. After a 5-min chase with 12CO2, the thin-walled sieve tubes were more heavily labeled than any other cell type of the leaf. After a 10-min chase with 12CO2, the thin-walled sieve tubes were even more heavily labeled. The companion cells generally were less heavily labeled than their associated thin-walled sieve tubes. Although all of the thick-walled sieve tubes were labeled in portions of leaf strips fed 14CO2 for 5 min and given a 10-min 12CO2 chase, only five of 72 vascular bundles below the 14CO2-exposed portions contained labeled thick-walled sieve tubes. Moreover, the few labeled thick-walledsieve tubes of the transport region always abutted 14C-labeled vascular parenchyma cells. The results of this study indicate that (1) the vascular parenchyma cells are able to retrieve at least sucrose from the vessels and transfer it to the thick-walled sieve tubes, (2) the thick-walled sieve tubes are not involved in long-distance transport, and (3) the thin-walled sieve tubes are capable themselves of accumulating sucrose and photosynthates from the apoplast, without the companion cells serving as intermediary cells.  相似文献   

13.
Leaf water potentials measured by in situ psychrometry were compared with leaf water potentials measured by the pressure chamber technique at various values of water potential in Helianthus annuus, Helianthus nuttallii, Vigna unguiculata, Nerium oleander, Pistacia vera, and Corylus avellana. In V. unguiculata, the leaf water potentials measured by the in situ psychrometer oscillated at the same periodicity as, and proportional to, the leaf conductance. In all species, potentials measured by in situ psychrometers operating in the psychrometric mode were linearly correlated with potentials measured with the pressure chamber. However, the in situ psychrometers underestimated the leaf water potential in the two Helianthus species at low water potentials and overestimated the water potential in P. vera, N. oleander, and C. avellana. The underestimation in the two Helianthus species at low water potentials resulted from differences in water potential across the leaf. The overestimation in P. vera, N. oleander, and C. avellana was considered to arise from low epidermal conductances in these species even after abrasion of the cuticle. Pressure-volume studies with Lycopersicon esculentum showed that less water was expressed from distal than proximal leaflets when the whole leaf was slowly pressurized. The implication of this for water relations characteristics obtained by pressure-volume techniques is discussed. We conclude that in situ psychrometers are suitable for following dynamic changes in leaf water potential, but should be used with caution on leaves with low epidermal conductances.  相似文献   

14.
A new method is presented for measurement of the CO2/O2 specificity factor of ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco). The [14C]3-phosphoglycerate (PGA) from the Rubisco carboxylase reaction and its dilution by the Rubisco oxygenase reaction was monitored by directly measuring the specific radioactivity of PGA. 14CO2 fixation with Rubisco occurred under two reaction conditions: carboxylase with oxygenase with 40 micromolar CO2 in O2-saturated water and carboxylase only with 160 micromolar CO2 under N2. Detection of the specific radioactivity used the amount of PGA as obtained from the peak area, which was determined by pulsed amperometry following separation by high-performance anion exchange chromatography and the radioactive counts of the [14C]PGA in the same peak. The specificity factor of Rubisco from spinach (Spinacia oleracea L.) (93 ± 4), from the green alga Chlamydomonas reinhardtii (66 ± 1), and from the photosynthetic bacterium Rhodospirillum rubrum (13) were comparable with the published values measured by different methods.  相似文献   

15.
A water flux model, which assumes that the dynamic functioning of the soil-plant-atmosphere continuum may be described by a series of steady states, was examined as a means for interpreting leaf water potential measurements in ‘Valencia’ orange trees (Citrus sinensis (L.) Osbeck). According to the model, leaf water potential should be related to transpirational flux, which in this experiment was estimated by the ratio of vapor pressure deficit of the atmosphere to leaf diffusion resistance (VPD/rleaf). Leaf water potentials decreased in a specific relationship with increasing values of VPD/rleaf provided that soil water was adequate and soil temperature was not too low, but regardless of season of the year or climatic or edaphic differences among 3 field locations. When soil water tensions exceeded 0.3 bar or when soil temperatures were lower than 15°C, deviations from the model occurred in the form of more negative leaf water potentials than predicted by VPD/rleaf. The model predicts from simple measurements made on intact plants that these differences were due to the modification of flow resistances by cool temperatures and the modification of both resistances and the potential of water at the source in the case of soil water depletion. The model may be a useful tool for interpreting plant water potential data under contrasting environmental conditions.  相似文献   

16.
Leaf water potentials measured with a pressure chamber   总被引:31,自引:17,他引:14       下载免费PDF全文
Boyer JS 《Plant physiology》1967,42(1):133-137
Leaf water potentials were estimated from the sum of the balancing pressure measured with a pressure chamber and the osmotic potential of the xylem sap in leafy shoots or leaves. When leaf water potentials in yew, rhododendron, and sunflower were compared with those measured with a thermocouple psychrometer known to indicate accurate values of leaf water potential, determinations were within ± 2 bars of the psychrometer measurements with sunflower and yew. In rhododendron. water potentials measured with the pressure chamber plus xylem sap were 2.5 bars less negative to 4 bars more negative than psychrometer measurements.

The discrepancies in the rhododendron measurements could be attributed, at least in part, to the filling of tissues other than xylem with xylem sap during measurements with the pressure chamber. It was concluded that, although stem characteristics may affect the measurements, pressure chamber determinations were sufficiently close to psychrometer measurements that the pressure chamber may be used for relative measurements of leaf water potentials, especially in sunflower and yew. For accurate determinations of leaf water potential, however, pressure chamber measurements must be calibrated with a thermocouple psychrometer.

  相似文献   

17.
The effect of decreases in turgor on chloroplast activity was studied by measuring the photochemical activity of intact sunflower (Helianthus annuus L. cv. Russian Mammoth) leaves having low water potentials. Leaf turgor, calculated from leaf water potential and osmotic potential, was found to be affected by the dilution of cell contents by water in the cell walls, when osmotic potentials were measured with a thermocouple psychrometer. After the correction of measurements of leaf osmotic potential, both the thermocouple psychrometer and a pressure chamber indicated that turgor became zero in sunflower leaves at leaf water potentials of −10 bars. Since most of the loss in photochemical activity occurred at water potentials below −10 bars, it was concluded that turgor had little effect on the photochemical activity of the leaves.  相似文献   

18.
Direct determinations and indirect calculations of phloem turgor pressure were compared in white ash (Fraxinus americana L.). Direct measurements of trunk phloem turgor were made using a modified Hammel-type phloem needle connected to a pressure transducer. Turgor at the site of the direct measurements was calculated from the osmotic potential of the phloem sap and from the water potential of the xylem. It was assumed that the water potentials of the phloem and xylem were close to equilibrium at any one trunk location, at least under certain conditions. The water potential of the xylem was determined from the osmotic potential of xylem sap and from the xylem tension of previously bagged leaves, measured with a pressure chamber. The xylem tension of bagged leaves on a branch adjacent to the site of the direct measurements was considered equivalent to the xylem tension of the trunk at that point. While both the direct and indirect measurements of phloem turgor showed clear diurnal changes, the directly measured pressures were consistently lower than the calculated values. It is not clear at present whether the discrepancy between the two values lies primarily in the calculated or in the measured pressures, and thus, the results from both methods as described here must be regarded as estimates of true phloem turgor.  相似文献   

19.
Gradients of tritiated water, 35S-sulphate and 32P-phosphate, were established in isolated segments of willow stems. Sieve tube exudate was collected as honeydew from the high activity end of the segment. After girdling the stem a few centimetres from the site of sieve tube puncture, the specific activity of 35S and 32P in the honeydew rose, whilst the specific activity of tritium remained constant. These findings indicate that prior to girdling, unlabelled sulphates and phosphates were contributing to the honeydew, whilst there had been no detectable contribution by unlabelled water from the low activity end of the segment. The data support the conclusions drawn from previous experiments by Peel et al. (1969), that water is relatively immobile in sieve tubes of willow when compared to solutes.  相似文献   

20.
Fisher DB 《Plant physiology》1990,94(2):455-462
An indicator-dilution technique for the measurement of flow rates, commonly used by animal physiologists for circulation measurements, was adapted to the measurement of phloem translocation rates in the wheat (Triticum aestivum L.) peduncle. The approach is based on the observation that, during the transport of a given amount of solute, its mean concentration will be inversely proportional to flow rate. For phloem transport in the wheat peduncle, the necessary measurements are (a) the time course of tracer kinetics in the peduncle phloem, (b) the volume of sieve tubes and companion cells in the monitored segment of the peduncle, and (c) the amount of tracer transported past that point. The method was evaluated by in situ monitoring of 32PO4 transport in pulse-labeling experiments. Specific activities (i.e.32P concentrations) of phloem exudate were in good agreement with those calculated from in situ count rates and measured phloem areas. Mass transport rates, calculated from volume flow rates and phloem exudate dry matter content, also agreed well with expected mass transport rates based on measurements of grain growth rate and net CO2 exchange by the ear. The indicator-dilution technique appears to offer good precision and accuracy for short-term measurements of phloem transport rates in the wheast peduncle and should be useful for other systems as well. In contrast to velocities based on time-delay measurements, it is more precise, more accurate, and produces an estimate of mean, rather than maximum, velocity. Also, since only a single detector is required, it can be applied to very short transport paths.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号