共查询到20条相似文献,搜索用时 15 毫秒
1.
Dominant negative forms of the phage Mu repressor, including the mutant Vir repressors, are not only rapidly degraded by the ClpXP protease but also promote degradation of the unmodified, wild-type repressor. This trans-targeting of the wild-type repressor depends upon a determinant within its C-terminal domain, which is needed for recognition by ClpX. An environmentally sensitive fluorescent probe (2-(4'-maleimidylanilino)naphthalene-6-sulfonic acid (MIANS)) attached to the C terminus of the full-length repressor indicated that Vir induces the movement of this domain into a more exposed configuration. Vir also promoted attachment of MIANS to the C terminus of the repressor at an accelerated rate, and it greatly increased the rate of phosphorylation of a cAMP-dependent protein kinase motif attached to the repressor C terminus. While an excess of Vir was needed to promote repressor phosphorylation at maximal rates, the presence of ClpX could increase phosphorylation rates at lower Vir levels. trans-Targeting of the Mu repressor is therefore promoted by exposing its ClpX recognition determinant, and the action of ClpX can assist Vir in exposing these determinants. 相似文献
2.
The bacteriophage Mu immunity repressor is a conformationally sensitive sensor that can be interconverted between forms resistant to and sensitive to degradation by ClpXP protease. Protease-sensitive repressor molecules with an altered C-terminal sequence promote rapid degradation of the wild-type repressor by inducing its C-terminal end to become exposed. Here we determined that the last 5 C-terminal residues (CTD5) of the wild-type repressor contain the motif required for recognition by the ClpX molecular chaperone, a motif that is strongly dependent upon the context in which it is presented. Although attachment of the 11-residue ssrA degradation tag to the C terminus of green fluorescent protein (GFP) promoted its rapid degradation by ClpXP, attachment of 5-27 C-terminal residues of the repressor failed to promote degradation. Disordered peptides derived from 41 and 35 C-terminal residues of CcdA (CcdA41) and thioredoxin (TrxA35), respectively, activated CTD5 when placed as linkers between GFP and repressor C-terminal sequences. However, when the entire thioredoxin sequence was included as a linker to promote an ordered configuration of the TrxA35 peptide, the resulting substrate was not degraded. In addition, a hybrid tag, in which CTD5 replaced the 3-residue recognition motif of the ssrA tag, was inactive when attached directly to GFP but active when attached through the CcdA41 peptide. Thus, CTD5 is sufficient to act as a recognition motif but has requirements for its presentation not shared by the ssrA tag. We suggest that activation of CTD5 may require presentation on a disordered or flexible domain that confers ligand flexibility. 相似文献
3.
C. M. van Drunen C. van Zuylen E. J. Mientjes N. Goosen P. van de Putte 《Molecular microbiology》1993,10(2):293-298
In this paper we show that the Escherichia coli protein Fis has a regulatory function in Mu transposition in the presence of Mu repressor. Fis can lower the transposition frequency of a mini-Mu 3–80-fold, but only if the Mu repressor is expressed simultaneously. In this novel type of regulation of transposition by the concerted action of Fis and repressor, the IAS, the internal activating sequence, is also involved as deletion of this site leads to the loss of the Fis effect. As the IAS contains strong repressor binding sites these are probably the target for the repressor in the observed negative regulation by Fis and repressor. However, the role of Fis and repressor is not only to inactivate the IAS, since a 4bp insertion in the IAS, which changes the spacing of the repressor-binding site, abolishes the enhancing function of the IAS but leaves the repressor-Fis effect intact. A likely target for Fis in this regulation is a strong Fis-binding site, which is located adjacent to the L2 transposase-binding site. However, when this Fis-binding sequence was substituted by a random sequence and Fis no longer showed specific binding to this site, the Fis effect was still observed. Although it is still possible that Fis can function by binding to this non-specific site in a particular complex, it seems more likely that Fis is directly or indirectly involved in determining the level of the repressor. 相似文献
4.
Mukhopadhyay B Marshall-Batty KR Kim BD O'Handley D Nakai H 《Molecular microbiology》2003,47(1):171-182
Rapid degradation of the bacteriophage Mu immunity repressor can be induced in trans by mutant, protease-hypersensitive repressors (Vir) with an altered C-terminal domain (CTD). Genetic and biochemical analysis established that distinct yet overlapping determinants in the wild-type repressor CTD modulate Vir-induced degradation by Escherichia coli ClpXP protease and DNA binding by the N-terminal DNA-binding domain (DBD). Although deletions of the repressor C-terminus resulted in both resistance to ClpXP protease and suppression of a temperature-sensitive DBD mutation (cts62), some cysteine-replacement mutations in the CTD elicited only one of the two phenotypes. Some CTD mutations prevented degradation induced by Vir and resulted in the loss of intrinsic ClpXP protease sensitivity, characteristic of wild-type repressor, and at least two mutant repressors protected Vir from proteolysis. One protease-resistant mutant became susceptible to Vir-induced degradation when it also contained the cts62 mutation, which weakens DNA binding but apparently facilitates conversion to a protease-sensitive conformation. Conversely, this CTD mutation was able to suppress temperature sensitivity of DNA binding by the cts62 repressor. The results suggest that determinants in the CTD not only provide a cryptic ClpX recognition motif but also direct CTD movement that exposes the motif and modulates DNA binding. 相似文献
5.
6.
B Dalrymple 《FEBS letters》1986,208(1):7-10
The IS30 transposase exhibits significant amino acid sequence homology to the phage Mu repressor c in the amino- and carboxy-terminal regions of the proteins. The conserved sequences include the proposed Mu repressor DNA binding site, which is also related to the proposed Mu and D108 transposase DNA binding sites. The carboxy-terminal homologies are characterised by two almost complete, and one partial, somewhat diverged amino acid sequence repeats. Only weak homologies to this domain are present in the Mu transposase (Mu A). Nevertheless, a clear link between an insertion sequence and a bacteriophage has been established. 相似文献
7.
8.
9.
Frameshift mutations in the bacteriophage Mu repressor gene can confer a trans-dominant virulent phenotype to the phage. 总被引:5,自引:1,他引:4 下载免费PDF全文
V Geuskens J L Vogel R Grimaud L Desmet N P Higgins A Toussaint 《Journal of bacteriology》1991,173(20):6578-6585
Virulent mutations in the bacteriophage Mu repressor gene were isolated and characterized. Recombination and DNA sequence analysis have revealed that virulence is due to unusual frameshift mutations which change several C-terminal amino acids. The vir mutations are in the same repressor region as the sts amber mutations which, by eliminating several C-terminal amino acids, suppress thermosensitivity of repressor binding to the operators by its N-terminal domain (J. L. Vogel, N. P. Higgins, L. Desmet, V. Geuskens, and A. Toussaint, unpublished data). Vir repressors bind Mu operators very poorly. Thus the Mu repressor C terminus, either by itself or in conjunction with other phage or host proteins, tunes the DNA-binding properties at the repressor N terminus. 相似文献
10.
11.
It was shown, using a relatively simple assay, that Mu repressor, cI, binds specifically to a region which spans the leftmost HindIII cleavage site on the phage genome. This extends the observations of Kwoh and Zipser [Nature (London) 277, 489-491 (1979)], who were able to define a binding region to the left of this site. These results provide support for the idea that the eight blocks of repeated DNA sequences, which also span the HindIII cleavage site, are involved in repressor binding. These results also indicate that cI repressor has a marked preference for supercoiled DNA. 相似文献
12.
Recognition of DNA by single-chain derivatives of the phage 434 repressor: high affinity binding depends on both the contacted and non-contacted base pairs. 总被引:2,自引:1,他引:2 下载免费PDF全文
Single-chain derivatives of the phage 434 repressor, termed single-chain repressors, contain covalently dimerized DNA-binding domains (DBD) which are connected with a peptide linker in a head-to-tail arrangement. The prototype RR69 contains two wild-type DBDs, while RR*69 contains a wild-type and an engineered DBD. In this latter domain, the DNA- contacting amino acids of thealpha3 helix of the 434 repressor are replaced by the corresponding residues of the related P22 repressor. We have used binding site selection, targeted mutagenesis and binding affinity studies to define the optimum DNA recognition sequence for these single-chain proteins. It is shown that RR69 recognizes DNA sequences containing the consensus boxes of the 434 operators in a palindromic arrangement, and that RR*69 optimally binds to non-palindromic sequences containing a 434 operator box and a TTAA box of which the latter is present in most P22 operators. The spacing of these boxes, as in the 434 operators, is 6 bp. The DNA-binding of both single-chain repressors, similar to that of the 434 repressor, is influenced indirectly by the sequence of the non-contacted, spacer region. Thus, high affinity binding is dependent on both direct and indirect recognition. Nonetheless, the single-chain framework can accommodate certain substitutions to obtain altered DNA-binding specificity and RR*69 represents an example for the combination of altered direct and unchanged indirect readout mechanisms. 相似文献
13.
Summary The DNA of an E. coli K12 strain harboring ten wildtype Mu prophages was restricted with endonuclease EcoRI, and the fragments ligated into the plasmid vector pMB9. Upon transformation of a strain carrying a heat inducible (Mu cts62) prophage, one temperature-resistant transformant was isolated. This transformant strain harbors the hybrid plasmid pKN001, containing the EcoRI.C fragment of Mu DNA as shown by restriction and heteroduplex analysis. Stable transformants of pKN001 are immune to superinfection with phage Mu. Transformation of superinfection with phage Mu. Transformation of Mu sensitive bacteria with pKN001 results in killing of the recipients (10-4 surviving bacteria). The killing function is not expressed upon transformation of Mu-immune (lysogenic) bacteria.This paper is dedicated by EGB to Dr. Luis F. Leloir, on the occasion of his 70th birthday 相似文献
14.
15.
16.
A study of the properties of deletion mutants at the 3’ end ofA, the gene encoding the transposase protein of phage Mu, shows that the mutants are defective in the high-frequency non-replicative transposition observed early after Mu infection as well as the high-frequency replicative transposition observed during Mu lytic growth. They show near-normal levels of lysogenization, low frequency transposition and precise excision. The mutants behave as if they are “blind” to the presence of Mu B, a protein whose function is essential for the high frequency of both replicative and non-replicative Mudna transposition. We have sequenced these deletion mutants as well as the amber mutant A 7110 which is known to be defective in replicative transposition.A 7110 maps at the 3’ end of geneA. We suggest that the carboxyl-terminal region of the A-protein is involved in protein-protein interactions, especially with the B-protein. We also show in this study that mutations upstream of the Shine-Dalgarno sequence of geneA and within the preceding genener, perturb the synthesis of A-protein and that higher levels of A-protein cause an inhibition ofA activity. 相似文献
17.
Summary
Lambda repressor was purified from an E. coli strain which produces 150 times more lambda repressor than a single lysogen. The sequence of the fifty N-terminal residues was determined by automated Edman degradation. It contains 43% of all arginine and lysine residues of the chain and constitutes according to the genetic data of Oppenheim et al. (1975) a substantial part of the operator-DNA-binding site of the repressor. 相似文献
18.
19.
The infection of Bacillus thuringiensis, B. cereus, B. mesentericus and B. polymyxa strains with temperate E. coli bacteriophage Mu cts62 integrated into plasmid RP4 under conditions of conjugative transfer is shown possible. The investigated strains of bacilli are not able to produce intact phage particles but they acquire the thermosensitive property determined by the phage genome. Gel electrophoresis and blot hybridization of DNA have confirmed the transfer of Mu cts62 genome or a part of it in the investigated strains of bacilli. 相似文献