共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Bidyottam Mittra Maria Fernanda Laranjeira-Silva Juliana Perrone Bezerra de Menezes Jennifer Jensen Vladimir Michailowsky Norma W. Andrews 《PLoS pathogens》2016,12(1)
Iron, an essential co-factor of respiratory chain proteins, is critical for mitochondrial function and maintenance of its redox balance. We previously reported a role for iron uptake in differentiation of Leishmania amazonensis into virulent amastigotes, by a mechanism that involves reactive oxygen species (ROS) production and is independent of the classical pH and temperature cues. Iron import into mitochondria was proposed to be essential for this process, but evidence supporting this hypothesis was lacking because the Leishmania mitochondrial iron transporter was unknown. Here we describe MIT1, a homolog of the mitochondrial iron importer genes mrs3 (yeast) and mitoferrin-1 (human) that is highly conserved among trypanosomatids. MIT1 expression was essential for the survival of Trypanosoma brucei procyclic but not bloodstream forms, which lack functional respiratory complexes. L. amazonensis LMIT1 null mutants could not be generated, suggesting that this mitochondrial iron importer is essential for promastigote viability. Promastigotes lacking one LMIT1 allele (LMIT1/Δlmit1) showed growth defects and were more susceptible to ROS toxicity, consistent with the role of iron as the essential co-factor of trypanosomatid mitochondrial superoxide dismutases. LMIT1/Δlmit1 metacyclic promastigotes were unable to replicate as intracellular amastigotes after infecting macrophages or cause cutaneous lesions in mice. When induced to differentiate axenically into amastigotes, LMIT1/Δlmit1 showed strong defects in iron content and function of mitochondria, were unable to upregulate the ROS-regulatory enzyme FeSOD, and showed mitochondrial changes suggestive of redox imbalance. Our results demonstrate the importance of mitochondrial iron uptake in trypanosomatid parasites, and highlight the role of LMIT1 in the iron-regulated process that orchestrates differentiation of L. amazonensis into infective amastigotes. 相似文献
3.
《植物生理学报》2013,(6):1984-1987
Dear Editor, In most plants, nitrogen (N) is acquired by roots in the form of nitrate (NO3-). In many species, NO3- is not assimi- lated in the roots, but is secreted into the xylem sap for translocation to the shoot, where it enters the cells to be metabolized and/or stored in the vacuoles. Several plasma membrane transporters involved in NO3- influx into the cell have been identified in Arabidopsis (Wang et ai., 2012), especially in the roots where members of the NPF (NRTI/PTR Family, L~ran et al., 2013) and NRT2 transporter families are predominantiy implicated. Concerning efflux to the xylem sap, only one transporter, NPF7.3/NRT1.5, has been shown to be involved. However, physiological characterization of npf7.31nrtl.5 knockout mutant plants demonstrated that other transporter(s) is (are) also contributing to xylem Ioad- inq of NO~- (Lin et al., 2008). 相似文献
4.
Ramona Landgraf Ulrike Smolka Simone Altmann Lennart Eschen-Lippold Melanie Senning Sophia Sonnewald Benjamin Weigel Nadezhda Frolova Nadine Strehmel Gerd Hause Dierk Scheel Christoph B?ttcher Sabine Rosahl 《The Plant cell》2014,26(8):3403-3415
The lipid biopolymer suberin plays a major role as a barrier both at plant-environment interfaces and in internal tissues, restricting water and nutrient transport. In potato (Solanum tuberosum), tuber integrity is dependent on suberized periderm. Using microarray analyses, we identified ABCG1, encoding an ABC transporter, as a gene responsive to the pathogen-associated molecular pattern Pep-13. Further analyses revealed that ABCG1 is expressed in roots and tuber periderm, as well as in wounded leaves. Transgenic ABCG1-RNAi potato plants with downregulated expression of ABCG1 display major alterations in both root and tuber morphology, whereas the aerial part of the ABCG1-RNAi plants appear normal. The tuber periderm and root exodermis show reduced suberin staining and disorganized cell layers. Metabolite analyses revealed reduction of esterified suberin components and hyperaccumulation of putative suberin precursors in the tuber periderm of RNA interference plants, suggesting that ABCG1 is required for the export of suberin components. 相似文献
5.
Tiffin LO 《Plant physiology》1966,41(3):515-518
Plant culture, exudate sampling, and analytical methods designed to ascertain the form of iron translocated are presented. 相似文献
6.
Jakob Engel Philipp S. Schmalhorst Thilo D?rk-Bousset Vincent Ferrières Fran?oise H. Routier 《The Journal of biological chemistry》2009,284(49):33859-33868
Galactofuranose (Galf) containing molecules have been described at the cell surface of several eukaryotes and shown to contribute to the virulence of the parasite Leishmania major and the fungus Aspergillus fumigatus. It is anticipated that a number of the surface glycoconjugates such as N-glycans or glycolipids are galactofuranosylated in the Golgi apparatus. This raises the question of how the substrate for galactofuranosylation reactions, UDP-Galf, which is synthesized in the cytosol, translocates into the organelles of the secretory pathway. Here we report the first identification of a Golgi-localized nucleotide sugar transporter, named GlfB, with specificity for a UDP-Galf. In vitro transport assays established binding of UDP-Galf to GlfB and excluded transport of several other nucleotide sugars. Furthermore, the implication of glfB in the galactofuranosylation of A. fumigatus glycoconjugates and galactomannan was demonstrated by a targeted gene deletion approach. Our data reveal a direct connection between galactomannan and the organelles of the secretory pathway that strongly suggests that the cell wall-bound polysaccharide originates from its glycosylphosphatidylinositol-anchored form. 相似文献
7.
8.
Braulio M. de Castro Xavier De Jaeger Cristina Martins-Silva Ricardo D. F. Lima Ernani Amaral Cristiane Menezes Patricia Lima Cintia M. L. Neves Rita G. Pires Thomas W. Gould Ian Welch Christopher Kushmerick Cristina Guatimosim Ivan Izquierdo Martin Cammarota R. Jane Rylett Marcus V. Gomez Marc G. Caron Ronald W. Oppenheim Marco A. M. Prado Vania F. Prado 《Molecular and cellular biology》2009,29(19):5238-5250
The vesicular acetylcholine (ACh) transporter (VAChT) mediates ACh storage by synaptic vesicles. However, the VAChT-independent release of ACh is believed to be important during development. Here we generated VAChT knockout mice and tested the physiological relevance of the VAChT-independent release of ACh. Homozygous VAChT knockout mice died shortly after birth, indicating that VAChT-mediated storage of ACh is essential for life. Indeed, synaptosomes obtained from brains of homozygous knockouts were incapable of releasing ACh in response to depolarization. Surprisingly, electrophysiological recordings at the skeletal-neuromuscular junction show that VAChT knockout mice present spontaneous miniature end-plate potentials with reduced amplitude and frequency, which are likely the result of a passive transport of ACh into synaptic vesicles. Interestingly, VAChT knockouts exhibit substantial increases in amounts of choline acetyltransferase, high-affinity choline transporter, and ACh. However, the development of the neuromuscular junction in these mice is severely affected. Mutant VAChT mice show increases in motoneuron and nerve terminal numbers. End plates are large, nerves exhibit abnormal sprouting, and muscle is necrotic. The abnormalities are similar to those of mice that cannot synthesize ACh due to a lack of choline acetyltransferase. Our results indicate that VAChT is essential to the normal development of motor neurons and the release of ACh.Cholinergic neurotransmission has key functions in life, as it regulates several central and peripheral nervous system outputs. Acetylcholine (ACh) is synthesized in the cytoplasm by the enzyme choline acetyltransferase (ChAT) (16). Choline supplied by the high-affinity choline transporter (CHT1) is required to maintain ACh synthesis (52). A lack of ChAT (4, 35) or the high-affinity choline transporter (21) in genetically modified mice is incompatible with life. ACh plays an important role in wiring the neuromuscular junction (NMJ) during development (38, 43). Embryonic synthesis of ACh is fundamental for the development of proper nerve-muscle patterning at the mammalian NMJ, as ChAT-null mice present aberrant nicotinic ACh receptor (nAChR) localization and increased motoneuron (MN) survival, axonal sprouting, and branching (4, 35).The vesicular ACh transporter (VAChT) exchanges cytoplasmic ACh for two vesicular protons (37, 41). Previously reported electrophysiological studies showed that quantal size is decreased by vesamicol, an inhibitor of VAChT, but only in nerve terminals that have been electrically stimulated (19, 59, 60, 63). VAChT overexpression in developing Xenopus MNs increases both the size and frequency of miniature-end-plate currents (54). In Caenorhabditis elegans, mutations in VAChT affect behavior (65). Moreover, a decrease in VAChT expression has functional consequences for mammals, as mutant mice with a 70% reduction in the expression levels of this transporter (VAChT knockdown [KDHOM] mice) are myasthenic and have cognitive deficits (47). Hence, vesicular transport activity is rate limiting for neurotransmission “in vivo” (18, 47).Exocytosis of synaptic vesicle contents is the predominant mechanism for the regulated secretion of neurotransmitters (55). However, alternative mechanisms of secretion have been proposed (20, 56, 61). Quantal ACh release, comparable to that seen in developing nerve terminals, has been detected in myocytes and fibroblasts in culture, which presumably do not express VAChT (14, 24). More recently, it was found that the correct targeting of Drosophila photoreceptor axons is disrupted in flies with null mutations in ChAT (64). Remarkably, the inactivation of VAChT did not produce the same result (64). The result suggests that the release of ACh during development is not dependent on VAChT, perhaps because it is nonvesicular or because vesicular storage can occur without VAChT.To test if the VAChT-independent secretion of ACh has any physiological role in the mammalian nervous system, we generated a mouse line in which the VAChT gene is deleted. These mice lack the stimulated release of ACh from synaptosomes, die after birth, and show several alterations in neuromuscular wiring consistent with a severe decrease in the cholinergic input to muscles during development. These experiments indicate that VAChT has an important role in maintaining activity-dependent ACh release that supports life and the correct patterning of innervation at the NMJ. 相似文献
9.
10.
OPT3 Is a Phloem-Specific Iron Transporter That Is Essential for Systemic Iron Signaling and Redistribution of Iron and Cadmium in Arabidopsis 总被引:1,自引:0,他引:1
Zhiyang Zhai Sheena R. Gayomba Ha-il Jung Nanditha K. Vimalakumari Miguel Pi?eros Eric Craft Michael A. Rutzke John Danku Brett Lahner Tracy Punshon Mary Lou Guerinot David E. Salt Leon V. Kochian Olena K. Vatamaniuk 《The Plant cell》2014,26(5):2249-2264
Iron is essential for both plant growth and human health and nutrition. Knowledge of the signaling mechanisms that communicate iron demand from shoots to roots to regulate iron uptake as well as the transport systems mediating iron partitioning into edible plant tissues is critical for the development of crop biofortification strategies. Here, we report that OPT3, previously classified as an oligopeptide transporter, is a plasma membrane transporter capable of transporting transition ions in vitro. Studies in Arabidopsis thaliana show that OPT3 loads iron into the phloem, facilitates iron recirculation from the xylem to the phloem, and regulates both shoot-to-root iron signaling and iron redistribution from mature to developing tissues. We also uncovered an aspect of crosstalk between iron homeostasis and cadmium partitioning that is mediated by OPT3. Together, these discoveries provide promising avenues for targeted strategies directed at increasing iron while decreasing cadmium density in the edible portions of crops and improving agricultural productivity in iron deficient soils. 相似文献
11.
Dopamine Transporter Is Required for In Vivo MPTP Neurotoxicity: Evidence from Mice Lacking the Transporter 总被引:10,自引:5,他引:10
Raul R. Gainetdinov Fabio Fumagalli Sara R. Jones Marc G. Caron 《Journal of neurochemistry》1997,69(3):1322-1325
Abstract: The neurotoxic effect of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) was tested on mice lacking the dopamine (DA) transporter (DAT−/− mice). Striatal tissue DA content and glial fibrillary acidic protein (GFAP) mRNA expression were assessed as markers of MPTP neurotoxicity. MPTP (30 mg/kg, s.c., b.i.d.) produced an 87% decrease in tissue DA levels and a 29-fold increase in the level of GFAP mRNA in the striatum of wild-type animals 48 h after administration. Conversely, there were no significant changes in either parameter in DAT−/− mice. Heterozygotes demonstrated partial sensitivity to MPTP administration as shown by an intermediate value (48%) of tissue DA loss. Direct intrastriatal infusion of the active metabolite of MPTP, 1-methyl-4-phenylpyridinium (MPP+ ; 10 m M ), via a microdialysis probe produced a massive efflux of DA in wild-type mice (>320-fold). In the DAT−/− mice the same treatment produced a much smaller increase in extracellular DA (sixfold), which is likely secondary to tissue damage due to the implantation of the dialysis probe. These observations show that the DAT is a mandatory component for expression of MPTP toxicity in vivo. 相似文献
12.
13.
Thuc Nghi Nguyen Arisa Uemura Wenting Shih Soichiro Yamada 《The Journal of biological chemistry》2010,285(46):35439-35445
Cytoskeletal regulation of cell adhesion is vital to the organization of multicellular structures. The focal adhesion protein zyxin emerged as a key regulator of actin assembly because zyxin recruits Enabled/vasodilator-stimulated phospho-proteins (Ena/VASP) to promote actin assembly. Zyxin also localizes to the sites of cell-cell adhesion and is thought to promote actin assembly with Ena/VASP. Using shRNA targeted to zyxin, we analyzed the roles of zyxin at adhesive contacts. In zyxin-deficient cells, the actin assembly at both focal adhesion and cell-cell adhesion was limited, but their migration rate was unchanged. Cell spreading on E-cadherin-coated surfaces and the formation of cell clusters were slower for zyxin-deficient cells than wild type cells. By ablating a single cell within a cell monolayer, we quantified the rate of wound closure driven by a contractile circumferential actin ring. Zyxin-deficient cells failed to recruit VASP to cell-cell junctions at the wound edge and had a slower wound closure rate than wild type cells. Our results suggest that, by recruiting VASP, zyxin regulates actin assembly at the sites of force-bearing cell-cell adhesion. 相似文献
14.
15.
Yun Ma Jessica J. Krueger Sara N. Redmon Sasidhar Uppuganti Jeffry S. Nyman Maureen K. Hahn Florent Elefteriou 《The Journal of biological chemistry》2013,288(42):30105-30113
Changes in bone remodeling induced by pharmacological and genetic manipulation of β-adrenergic receptor (βAR) signaling in osteoblasts support a role of sympathetic nerves in the regulation of bone remodeling. However, the contribution of endogenous sympathetic outflow and nerve-derived norepinephrine (NE) to bone remodeling under pathophysiological conditions remains unclear. We show here that differentiated osteoblasts, like neurons, express the norepinephrine transporter (NET), exhibit specific NE uptake activity via NET and can catabolize, but not generate, NE. Pharmacological blockade of NE transport by reboxetine induced bone loss in WT mice. Similarly, lack of NE reuptake in norepinephrine transporter (Net)-deficient mice led to reduced bone formation and increased bone resorption, resulting in suboptimal peak bone mass and mechanical properties associated with low sympathetic outflow and high plasma NE levels. Last, daily sympathetic activation induced by mild chronic stress was unable to induce bone loss, unless NET activity was blocked. These findings indicate that the control of endogenous NE release and reuptake by presynaptic neurons and osteoblasts is an important component of the complex homeostatic machinery by which the sympathetic nervous system controls bone remodeling. These findings also suggest that drugs antagonizing NET activity, used for the treatment of hyperactivity disorders, may have deleterious effects on bone accrual. 相似文献
16.
Manganese (Mn) is an essential trace element for plants. Recently, the genes responsible for uptake of Mn in plants were identified in Arabidopsis and rice. However, the mechanism of Mn distribution in plants has not been clarified. In the present study we identified a natural resistance-associated macrophage protein (NRAMP) family gene in rice, OsNRAMP3, involved in Mn distribution. OsNRAMP3 encodes a plasma membrane-localized protein and was specifically expressed in vascular bundles, especially in phloem cells. Yeast complementation assay showed that OsNRAMP3 is a functional Mn-influx transporter. When OsNRAMP3 was absent, rice plants showed high sensitivity to Mn deficiency. Serious necrosis appeared on young leaves and root tips of the OsNRAMP3 knockout line cultivated under low Mn conditions, and high Mn supplies could rescue this phenotype. However, the necrotic young leaves of the knockout line possessed similar levels of Mn to the wild type, suggesting that the necrotic appearance was caused by disturbed distribution of Mn but not a general Mn shortage. Additionally, compared with wild type, leaf Mn content in osnramp3 plants was mostly in older leaves. We conclude that OsNRAMP3 is a vascular bundle-localized Mn-influx transporter involved in Mn distribution and contributes to remobilization of Mn from old to young leaves. 相似文献
17.
18.
Junichi Seino Li Wang Yoichiro Harada Chengcheng Huang Kumiko Ishii Noboru Mizushima Tadashi Suzuki 《The Journal of biological chemistry》2013,288(37):26898-26907
Macroautophagy is an essential, homeostatic process involving degradation of a cell''s own components; it plays a role in catabolizing cellular components, such as protein or lipids, and damaged or excess organelles. Here, we show that in Atg5−/− cells, sialyloligosaccharides specifically accumulated in the cytosol. Accumulation of these glycans was observed under non-starved conditions, suggesting that non-induced, basal autophagy is essential for their catabolism. Interestingly, once accumulated in the cytosol, sialylglycans cannot be efficiently catabolized by resumption of the autophagic process, suggesting that functional autophagy is important for preventing sialyloligosaccharides from accumulating in the cytosol. Moreover, knockdown of sialin, a lysosomal transporter of sialic acids, resulted in a significant reduction of sialyloligosaccharides, implying that autophagy affects the substrate specificity of this transporter. This study thus provides a surprising link between basal autophagy and catabolism of N-linked glycans. 相似文献
19.
20.
Zheng Tan Na Xie Sami Banerjee Huachun Cui Mingui Fu Victor J. Thannickal Gang Liu 《The Journal of biological chemistry》2015,290(1):46-55
There has been fast growing evidence showing that glycolysis plays a critical role in the activation of immune cells. Enhanced glycolysis leads to increased formation of intracellular lactate that is exported to the extracellular environment by monocarboxylate transporter 4 (MCT4). Although the biological activities of extracellular lactate have been well studied, it is less understood how the lactate export is regulated or whether lactate export affects glycolysis during inflammatory activation. In this study, we found that MCT4 is up-regulated by TLR2 and TLR4, but not TLR3 agonists in a variety of macrophages. The increased expression of MCT4 was mediated by MYD88 in a NF-κB-dependent manner. Furthermore, we found that MCT4 is required for macrophage activation upon TLR2 and TLR4 stimulations, as evidenced by attenuated expression of proinflammatory mediators in macrophages with MCT4 knockdown. Mechanistically, we found that MCT4 knockdown leads to enhanced intracellular accumulation of lactate and decreased glycolysis in LPS-treated macrophages. We found that LPS-induced expression of key glycolytic enzymes hexokinase 2 and 6-phosphofructo-2-kinase/fructose-2,6-biphosphatase 3 is diminished in macrophages with MCT4 knockdown. Our data suggest that MCT4 up-regulation represents a positive feedback mechanism in macrophages to maintain a high glycolytic rate that is essential to a fully activated inflammatory response. 相似文献