首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
New data on spermiogenesis and the ultrastructure of spermatozoa of ‘true’ tapeworms (Eucestoda) are summarized. Since 2001, more than 50 species belonging to most orders of the Eucestoda have been studied or reinvestigated, particularly members of the Caryophyllidea, Spathebothriidea, Diphyllobothriidea, Bothriocephalidea, Trypanorhyncha, Tetraphyllidea, Proteocephalidea, and Cyclophyllidea. A new classification of spermatozoa of eucestodes into seven basic types is proposed and a key to their identification is given. For the first time, a phylogenetic tree inferred from spermatological characters is provided. New information obtained in the last decade has made it possible to fill numerous gaps in the character data matrix, enabling us to carry out a more reliable analysis of the evolution of ultrastructural characters of sperm and spermiogenesis in eucestodes. The tree is broadly congruent with those based on morphological and molecular data, indicating that convergent evolution of sperm characters in cestodes may not be as common as in other invertebrate taxa. The main gaps in the current knowledge of spermatological characters are mapped and topics for future research are outlined, with special emphasis on those characters that might provide additional information about the evolution of tapeworms and their spermatozoa. Future studies should be focused on representatives of those major groups (families and orders) in which molecular data indicate paraphyly or polyphyly (e.g. ‘Tetraphyllidea’ and Trypanorhyncha) and on those that have a key phylogenetic position among eucestodes (e.g. Diphyllidea, ‘Tetraphyllidea’, Lecanicephalidea, Nippotaeniidea).  相似文献   

2.
A phylogenetic analysis of tapeworms (Eucestoda) based on complete sequences of the 18S rRNA genes of 43 taxa (including new sequences of 12 species) was carried out, with the emphasis on the groups parasitising teleost fish and reptiles. Spathebothriidea and Trypanorhyncha (the latter group being paraphyletic) appeared as basal groups of the Eucestoda but their position was not stable. The tetrafossate orders (Litobothriidea, Lecanicephalidea, Tetraphyllidea, Proteocephalidea, Nippotaeniidea, Tetrabothriidea and Cyclophyllidea) were well separated from the remaining groups. Results supported polyphyly of the Pseudophyllidea formed by two distinct clades: one with diphyllobothriids (Diphyllobothrium, Schistocephalus, Spirometra and Duthiersia) and another including Abothrium, Probothriocephalus, Eubothrium and Bothriocephalus. The former pseudophyllidean clade formed a separate branch with the Caryophyllidea (Khawia and Hunterella) and Haplobothriidea (Haplobothrium), the latter taxon being closely related to either caryophyllideans or diphyllobothriids in different analyses. Proteocephalideans formed a monophyletic group in all analyses and constituted a clade within the Tetraphyllidea thus rendered paraphyletic. Within the Proteocephalidea, the Acanthotaeniinae (Acanthotaenia from reptiles in Africa) and Gangesiinae (Gangesia and Silurotaenia from silurid fish in the Palearctic Region) were separated from parasites of freshwater fish and mammals. The family Proteocephalidae was found to be paraphyletic due to the placement of a monticelliid species, Monticellia sp., in a clade within the former family. The genus Proteocephalus appeared as an artificial assemblage of unrelated taxa which is congruent with previous molecular analyses.  相似文献   

3.
The interrelationships of the tapeworms (Platyhelminthes: Cestoidea) were inferred by analysis of complete gene sequences (approximately 2,200 bp) of 18S small subunit ribosomal DNA (18S) and partial gene sequences (approximately 900 bp) of elongation factor-1alpha (Ef-1alpha). New collections were made of 23 species representing each of the 14 currently recognized orders of tapeworms, including the Amphilinidea, Gyrocotylidea, and the 12 orders of the Eucestoda. Sequences were determined directly from polymerase chain reaction (PCR) products by either manual or automated methods. Nucleotide sequences of platyhelminth species outside of the Cestoidea were obtained for rooting the resulting trees. The 18S sequences were aligned with reference to the secondary structural features of the gene and the Ef-1alpha sequences were aligned with reference to their corresponding amino acid residues. Significant length variation among taxa was observed in the V2, V4, and V7 variable regions of the 18S gene. Such positions where sequences could not be aligned confidently were excluded from the analyses. Third codon positions of the Ef-1alpha gene were inferred to be saturated at an ordinal level of comparison. In addition, a short (approximately 35 bp) intron region of the Ef-1alpha gene was found to be shared only among the eucestode taxa, with the exception of Spathebothrium simplex (Spathebothriidea), which lacked the intron. Complete alignments showing structural features of the genes and sites excluded from analysis are provided as appendices. The sequence data were partitioned into 7 data sets in order to examine the effects of analyses on different subsets of the data. Analyses were conducted on the 2 genes independently, different codon positions of Ef-1alpha, amino acid sequences of Ef-1alpha, and combinations thereof. All subsets of the data were analyzed under the criterion of maximum parsimony as well as minimum evolution using both maximum-likelihood estimated, and LogDet-transformed distances. Results varied among the different data partitions and methods of analysis. Nodes with strong character support, however, were consistently recovered, and a general pattern of evolution was observed. Monophyly of the Cestoidea (Amphilinidea + Gyrocotylidea + Eucestoda) and Eucestoda and the traditionally accepted positions of the Amphilinidea and Gyrocotylidea as sister lineages to the Eucestoda were supported. Within the Eucestoda, the Spathebothriidea was found to be the sister of all other eucestodes. The remaining orders generally formed a diphyletic pattern of evolution consisting of separate difossate and tetrafossate lineages. This pattern was not universally observed among the analyses, primarily because the trypanorhynch and diphyllidean taxa showed instability in their phylogenetic position. Additional relationships that showed high levels of nodal support included a sister relationship between the Pseudophyllidea and Haplobothriidea and a clade uniting the Cyclophyllidea, Nippotaeniidea, and Tetrabothriidea. The Tetraphyllidea, as currently defined, was found to be paraphyletic without the inclusion of the orders Proteocephalidea and, possibly, Lecanicephalidea. Ordinal status of a monophyletic Litobothriidea, currently classified within the Tetraphyllidea, was found to be supported from a phylogenetic perspective.  相似文献   

4.
The construction of a stable phylogeny for the Cestoda, indicating the interrelationships of recognised orders and other major lineages, has proceeded iteratively since the group first received attention from phylogenetic systematists. Molecular analyses using nuclear ribosomal RNA gene fragments from the small (ssrDNA) and large (lsrDNA) subunits have been used to test competing evolutionary scenarios based on morphological data but could not arbitrate between some key conflicting hypotheses. To the ribosomal data, we have added a contiguous fragment of mitochondrial (mt) genome data (mtDNA) of partial nad1-trnN-trnP-trnI-trnK-nad3-trnS-trnW-cox1-trnT-rrnL-trnC-partial rrnS, spanning 4034-4447 bp, where new data for this region were generated for 18 species. Bayesian analysis of mtDNA and rDNA as nucleotides, and where appropriate as amino acids, demonstrated that these two classes of genes provide complementary signal across the phylogeny. In all analyses, except when using mt amino acids only, the Gyrocotylidea is sister group to all other Cestoda (Nephroposticophora), and Amphilinidea forms the sister group to the Eucestoda. However, an earliest-diverging position of Amphilinidea is strongly supported in the mt amino acid analysis. Amphilinidea exhibit a unique tRNA arrangement (nad1-trnI-trnL2-trnP-trnK-trnV-trnA-trnN-nad3), whereas Gyrocotylidea shares that of the derived lineages, providing additional evidence of the uniqueness of amphilinid genes and genomes. The addition of mtDNA to the rDNA genes supported the Caryophyllidea as the sister group to (Spathebothriidea+remaining Eucestoda), a hypothesis consistently supported by morphology. This relationship suggests a history of step-wise evolutionary transitions from simple monozoic, unsegmented tapeworms to the more familiar polyzoic, externally segmented (strobilate) forms. All our data partitions recovered Haplobothriidea as the sister group to Diphyllobothriidae. The sister-group relationship between Diphyllidea and Trypanorhyncha, as previously established using rDNA, is not supported by the mt data, although it is supported by the combined mt and rDNA analysis. With regards to the more derived taxa, in all except the mt amino acid analysis, the following topology is supported: (Bothriocephalidea (Litobothriidea (Lecanicephalidea (Rhinebothriidea (Tetraphyllidea, (Acanthobothrium, Proteocephalidea), (Nippotaeniidea, Mesocestoididae, Tetrabothriidea, Cyclophyllidea)))))), where the Tetraphyllidea are paraphyletic. Evidence from the mt data provides strong (nucleotides) to moderate (amino acids) support for Tetraphyllidea forming a group to the inclusion of Proteocephalidea, with the latter consistently forming the sister group to Acanthobothrium. The interrelationships among Nippotaeniidea, Mesocestoididae, Tetrabothriidea and Cyclophyllidea remain ambiguous and require further systematic attention. Mitochondrial and nuclear rDNA data provide conflicting signal for certain parts of the cestode tree. In some cases mt data offer results in line with morphological evidence, such as the interrelationships of the early divergent lineages. Also, Tetraphyllidea, although remaining paraphyletic with the inclusion of the Proteocephalidea, does not include the most derived cestodes; a result which has consistently been obtained with rDNA.  相似文献   

5.
Interrelationships of the tapeworms (Platyhelminthes: Cestoda) were examined by use of small (SSU) and large (LSU) subunit ribosomal DNA sequences and morphological characters. Fifty new complete SSU sequences were added to 21 sequences previously determined, and 71 new LSU (D1-D3) sequences were determined for the complementary set of taxa representing each of the major lineages of cestodes as currently understood. New sequences were determined for three amphilinidean taxa, but were removed from both alignments due to their excessively high degree of divergence from other cestode sequences. A morphological character matrix coded for supraspecific taxa was constructed by the modification of matrices from recently published studies. Maximum-parsimony (MP) analyses were performed on the LSU, SSU, LSU+SSU, and morphological data partitions, and minimum-evolution (ME) analyses utilizing a general time reversible model of nucleotide substitution including estimates of among-site rate heterogeneity were performed on the molecular data partitions. Resulting topologies were rooted at the node separating the Gyrocotylidea from the Eucestoda. The LSU data were found to be more informative than the SSU data and were more consistent with inferences from morphology, although nodal support was generally weak for most basal nodes. One class of transitions was found to be saturated for comparisons between the most distantly related taxa (gyrocotylideans vs cyclophyllideans and tetrabothriideans). Differences in the topologies resulting from MP and ME analyses were not statistically significant. Nonstrobilate orders formed the basal lineages of trees resulting from analysis of LSU data and morphology. Difossate orders were basal to tetrafossate orders, the latter of which formed a strongly supported clade. A clade including the orders Cyclophyllidea, Nippotaeniidea, and Tetrabothriidea was supported by all data partitions and methods of analysis. Paraphyly of the orders Pseudophyllidea, Tetraphyllidea, and Trypanorhyncha was consistent among the molecular data partitions. Inferences are made regarding a monozoic (nonsegmented) origin of the Eucestoda as represented by the Caryophyllidea and for the evolution of the strobilate and acetabulate/tetrafossate conditions having evolved in a stepwise pattern.  相似文献   

6.
The Gyrocotylidea, a small and enigmatic group of intestinal parasites of chimaeras, has been considered to be related either to the Monogenea, or, more frequently, to the most primitive monozoic tapeworms (Cestoda), i.e., the Amphilinidea and Caryophyllidea. The present study, based on transmission electron microscopical observations of a species of Gyrocotyle from the rabbit fish, Chimaera monstrosa, in the North Atlantic, demonstrates for the first time the presence of microtriches as surface structures of gyrocotylideans. Because microtriches are considered to be an autapomorphy of tapeworms (Cestoda), in which they differ from other Neodermata (Monogenea and Trematoda), the present data represent another source of evidence in support of a close relationship between the gyrocotylideans and the tapeworms sensu stricto (Eucestoda). Simple morphology, small size, and shape uniformity of the microtriches of Gyrocotyle sp. may indicate they represent an original (plesiomorphic) form that then evolved in more derived cestode groups into a variety of types present mainly on the scolex. The microtriches of Gyrocotyle sp. resemble those found in caryophyllidean, spathebothriidean, pseudophyllidean, and trypanorhynch cestodes, which are considered to represent the most basal groups of the Eucestoda.  相似文献   

7.
Phylogenetic relationships of all genera of the order Caryophyllidea, possibly the earliest branching group of true tapeworms (Platyhelminthes: Eucestoda) and the only one that is monozoic, have been assessed for the first time. Results of this cladistic analysis, inferred from 30 unweighted morphological characters, are only partly congruent with the existing classification, which consists of four families based on the position of the inner longitudinal muscles in relation to the internal genital organs. Whereas all but five genera of the Caryophyllaeidae form a monophyletic clade, members of the Capingentidae are split, occurring within six unrelated groups. The Lytocestidae is also paraphyletic, as some genera appear in four unrelated clades. Archigetes appears in a derived clade, indicating that its direct (monoxenous) life-cycle involving only tubificid oligochaetes is secondarily derived and not plesiomorphic among the Eucestoda, as postulated by some authors.  相似文献   

8.
Phylogenetic and phylogeographic studies suggest that a majority of asexual organisms are evolutionarily recent offshoots of extant sexual taxa and that old clonal lineages tend to be isolated from their sexual and younger asexual counterparts. These observations have often been interpreted as support for the long-term disadvantages of asexuality resulting from the mechanisms of clonal decay. Although clonal decay is likely to be an important mechanism that limits the temporal and spatial distribution of asexual lineages, we argue here that contemporary phylogenetic analyses, which are mostly restricted to simple comparisons of "recent" and "ancient" clones, need to be tested against an appropriate null model of neutrality. We use computer simulations to show that many empirical observations of the distribution of asexuality do not in fact reject a null model of the neutral turnover of clones spawned by sexual relatives. In particular, neutral clonal turnover results in qualitatively similar pattern of clonal spatial distribution and age structure, as does a process that includes clonal decay. Although there are important quantitative differences between predictions made by the two models, we show that published empirical data are still inadequate to distinguish between them. Further work on sexual-asexual complexes is therefore required before clonal turnover can be rejected as a parsimonious explanation of the spatial distribution and age structure of asexual lineages.  相似文献   

9.
Conflicting phylogenetic signals at the base of the metazoan tree   总被引:6,自引:0,他引:6  
A phylogenetic framework is essential for under-standing the origin and evolution of metazoan development. Despite a number of recent molecular studies and a rich fossil record of sponges and cnidarians, the evolutionary relationships of the early branching metazoan groups to each other and to a putative outgroup, the choanoflagellates, remain uncertain. This situation may be the result of the limited amount of phylogenetic information found in single genes and the small number of relevant taxa surveyed. To alleviate the effect of these analytical factors in the phylogenetic recons-truction of early branching metazoan lineages, we cloned multiple protein-coding genes from two choanoflagellates and diverse sponges, cnidarians, and a ctenophore. Comparisons of sequences for alpha-tubulin, beta-tubulin, elongation factor 2, HSP90, and HSP70 robustly support the hypothesis that choanoflagellates are closely affiliated with animals. However, analyses of single and concatenated amino acid sequences fail to resolve the relationships either between early branching metazoan groups or between Metazoa and choano-flagellates. We demonstrate that variable rates of evolution among lineages, sensitivity of the analyses to taxon selection, and conflicts in the phylogenetic signal contained in different amino acid sequences obscure the phylogenetic associations among the early branching Metazoa. These factors raise concerns about the ability to resolve the phylogenetic history of animals with molecular sequences. A consensus view of animal evolution may require investigations of genome-scale characters.  相似文献   

10.
11.
The phylogenetic position of Sipuncula, a group of unsegmented marine worms, has been controversial for several decades: Especially based on morphological data, closer relationships to Mollusca or Annelida were among the most favoured hypotheses. Increasing amounts of molecular data in recent years have consistently placed Sipuncula either in close affinity to or even within Annelida, the segmented worms, and rejected a close relationship to Mollusca. Yet, it remained uncertain whether Sipuncula is the sister group of Annelida or an annelid subtaxon. Therefore, herein we gathered data for five nuclear genes, which have been rarely used regarding Annelida and Sipuncula, and combined these with data for six previously used genes to further elucidate the phylogenetic position of Sipuncula. We also compiled a data set for 78 ribosomal proteins from publicly available genomic data sets. These are the two largest data sets for annelids with more than 10 taxa to date. All analyses placed Sipuncula within Annelida. For the first time, topology tests significantly rejected the possibility that Sipuncula is sister to Annelida. Thus, our analyses revealed that Sipuncula had secondarily lost segmentation. Given that unsegmented Echiura is also an annelid subtaxon, segmentation, a key character of Annelida, is much more variable than previously thought. Yet, this conclusion does not support the hypothesis that the last common ancestor of Annelida, Arthropoda and Chordata was segmented, assuming several losses along the branches leading to them. As yet no traces of segmentation could be shown in taxa exhibiting serially organized organ systems such as certain Mollusca, while in Sipuncula and Echiura such traces could be demonstrated. An independent origin of segmentation in Annelida, Arthropoda and Chordata thus appears to be more plausible and parsimonious.  相似文献   

12.
We used a data matrix of 65 morphological characters from 25 ingroup and 6 outgroup taxa, and an alignment comprising complete 18S rDNA sequences from 82 species of parasitic and free-living Platyhelminthes and from 19 species of lower invertebrates to analyse phylogenetic relationships of various platyhelminth taxa. Of the 1358 unambiguously alignablc molecular positions, 995 were variable and 757 were phylogenctically informative (parsimony criterion); complete 18S rDNA sequences ranged in length from 1755 to 2873 bp. Main conclusions are: Ncodermata are monophylctic, and the Trematoda, Monogenca and Cestoda within them are monophylctic as well. The sister group of the Ncodermata is all the other Ncoophora; the Kalyptorhynchia, Typhloplanida, Dalyelliida and Tcmnocephalida form one clade, and the last three another. Monophyly of the Seriata is rejected, but Polycladida/ Macrostomida/Haplopharyngida are monophylctic, as arc the last two taxa. As a consequence, validity of the taxon Trepaxonemata is rejected. Further studies must show the correct position of the Acocla and Nemertodermatida. It is stressed that morphological and molecular data in some respects lead to contradictory results, for instance concerning the position of the Fecampiidac/ Urastoma/Ichthyophaga and the relative position of the Lccithoepitheliata. Denser sampling of taxa for molecular data, complementary sequences from independent genes, and inclusion of additional morphological data are necessary to resolve these contradictions.  相似文献   

13.
Labral spines are sharp projections of the apertural lip found in some marine gastropods that are used to penetrate hard-shelled prey. The majority of gastropod genera that contain labral spine-bearing species are found in the subfamily Ocenebrinae (Gastropoda: Muricidae). To reconstruct the evolutionary history of labral spine-bearing and labral spine-lacking gastropods in the eastern Pacific (EP) Ocean, partial sequences of two mitochondrial genes (cytochrome oxidase I and 12S rRNA) were obtained from representative taxa. Despite high nucleotide bias, a variety of phylogenetic reconstruction methods produced the same tree topology. The traditional taxonomic view that all "Nucella-like" spine-bearing taxa in the EP belong to a monophyletic "Acanthina" is rejected due to nonmonophyly of this group. The more recently recognized "Acanthinucella" is also not monophyletic, and we therefore propose the new genus Mexacanthina for two Mexican species formerly assigned to Acanthinucella. The genus Ocinebrina, which first appears in the middle Eocene, is not a stem EP ocenebrine lineage and may also not be a monophyletic clade. Tracing the evolutionary history of labral spines among extant lineages indicates that the absence of a labral spine is ancestral for all EP ocenebrines. Ancestral conditions could not be resolved unambiguously for all nodes of the phylogeny based on extant taxa. However, by jointly considering both molecular phylogenetic relationships and the phylogenetic affinities of several extinct taxa, all remaining character state transformation can be inferred unambiguously. Based on this analysis, a labral spine likely evolved independently in at least four lineages of EP ocenebrines. Although homoplasy appears to characterize labral spine evolution among ocenebrine gastropods, the structural position of a labral spine was evolutionarily altered in one lineage, indicating that different types of labral spines do not necessarily reflect convergent evolution.  相似文献   

14.
Placing amoeboid lineages on the eukaryotic tree of life is difficult due to the paucity of comparable morphological characters and the limited molecular data available for many groups. This situation has led to the lumping of distantly related lineages into large inclusive groups, such as Sarcodina, that do not reflect evolutionary relationships. Previous analyses of molecular markers with limited taxon sampling reveal members of Sarcodina are scattered in five of the six proposed supergroups. We have used multigene analyses to place seven diverse amoeboid lineages-two Nolandella spp., Rhizamoeba sp., Pessonella sp., Arcella hemisphaerica, Arachnula sp. and Trichosphaerium sp.-on the eukaryotic tree of life. Bayesian analysis of the concatenated data of the four genes sequenced (SSU-rDNA, actin, alpha-tubulin and beta-tubulin), including diverse representatives of eukaryotes, indicates that all seven taxa group within the 'Amoebozoa' supergroup. We further performed separate analyses of the well-sampled SSU-rDNA and actin genes using Bayesian and Maximum Likelihood analyses to assess the positions of our newly characterized taxa. In the case of SSU-rDNA, we performed extensive analyses with removal of the fastest rates classes to evaluate the stability and resolution of various taxonomic hypotheses within 'Amoebozoa'. Five of our seven amoeboid lineages fall within well-supported clades that are corroborated by morphology. In contrast, the positions of Arachnula sp. and Trichosphaerium sp. in the SSU-rDNA gene trees are unstable and vary by analyses. Placement of these taxa will require additional data from slowly evolving genes combined with taxon-rich phylogenetic analyses. Finally, the analyses without the fastest rate classes demonstrate that SSU-rDNA has a limited signal for deep relationships within the 'Amoebozoa'.  相似文献   

15.
Caryophyllidean cestodes (Platyhelminthes) represent an unusual group of tapeworms lacking serially repeated body parts that potentially diverged from the common ancestor of the Eucestoda prior to the evolution of segmentation. Here we evaluate the utility of two nuclear and two mitochondrial molecular markers (ssrDNA and lsrDNA, nad3 and cox1) for use in circumscribing generic boundaries and estimating interrelationships in the group. We show that these commonly employed markers do not contain sufficient signal to infer well-supported phylogenetic estimates due to substitution saturation. Moreover, we detected multiple trnK+nad3+trnS+trnW+cox1 haplotypes within individuals, indicating a history of gene exchange between the mitochondrial and nuclear genomes. The presence of such nuclear paralogs (i.e. numts), to our knowledge described here in cestodes for the first time, together with the results of phylogenetic, saturation and split-decomposition analyses all suggest that finding informative markers for estimating caryophyllidean evolution is unusually problematic in comparison to other major lineages of tapeworms.  相似文献   

16.
Phylogenetic analyses of ribosomal RNA genes have become widely accepted as a framework for understanding broad-scale eukaryotic evolution. Nevertheless, conflicts exist between the phylogenetic placement of certain taxa in rDNA trees and their expected position based on fossils, cytology, or protein-encoding gene sequences. For example, pelobiont amoebae appear to be an ancient group based on cytologic features, but they are not among the early eukaryotic brances in rDNA analyses. In this report, the derived position of pelobionts in rDNA trees is shown to be unreliable and likely due to long-branch attraction among more deeply branching sequences. All sequences that branch near the base of the tree suffer from relatively high apparent substitution rates and exhibit greater variation in ssu rDNA sequence length. Moreover, the order of the branches leading from the root of the eukaryotic tree to the base of the so-called "crown taxa" is consistent with a sequential attachment, due to "long-branch" effects, of sequences with increasing rates of evolution. These results suggest that the basal eurkaryotic topology drawn from rDNA analyses may be, in reality, an artifact of variation in the rate of molecular evolution among eukaryotic taxa.  相似文献   

17.
Several different groups of birds have been proposed as being the oldest or earliest diverging extant lineage within the avian phylogenetic tree, particularly ratites (Struthioniformes), waterfowl (Anseriformes), and shorebirds (Charadriiformes). Difficulty in resolving this issue stems from several factors, including the relatively rapid radiation of primary (ordinal) bird lineages and the lack of characters from an extant outgroup for birds that is closely related to them by measure of time. To help resolve this question, we have sequenced entire mitochondrial genomes for five birds (a rhea, a duck, a falcon, and two perching birds), one crocodilian, and one turtle. Maximum parsimony and maximum likelihood analyses of these new sequences together with published sequences (18 taxa total) yield the same optimal tree topology, in which a perching bird (Passeriformes) is sister to all the other bird taxa. A basal position for waterfowl among the bird study taxa is rejected by maximum likelihood analyses. However, neither the conventional view, in which ratites (including rhea) are basal to other birds, nor tree topologies with falcon or chicken basal among birds could be rejected in the same manner. In likelihood analyses of a subset of seven birds, alligator, and turtle (9 taxa total), we find that increasing the number of parameters in the model shifts the optimal topology from one with a perching bird basal among birds to the conventional view with ratites diverging basally; moreover, likelihood scores for the two trees are not significantly different. Thus, although our largest set of taxa and characters supports a tree with perching birds diverging basally among birds, the position of this earliest divergence among birds appears unstable. Our analyses indicate a sister relationship between a waterfowl/chicken clade and ratites, relative to perching birds and falcon. We find support for a sister relationship between turtles and a bird/crocodilian clade, and for rejecting both the Haemothermia hypothesis (birds and mammals as sister taxa) and the placement of turtles as basal within the phylogenetic tree for amniote animals.  相似文献   

18.
Phylogenetic relationships among early crinoids are evaluated by maximizing parsimonious‐informative characters that are unordered and unweighted. Primarily Tremadocian–Darriwilian (Early–Middle Ordovician) taxa are analysed. Stratigraphic congruence metrics support the best phylogenetic hypothesis derived using parsimony methods. This study confirms the traditionally recognized lineages of Palaeozoic crinoids and provides new information on the branching order of evolving lineages. Camerates are basal crinoids with progressively more tipward groups (from an Ordovician perspective) being protocrinoids, cladids (paraphyletic), hybocrinids and disparids. The Protocrinoida should be maintained, but the Aethocrinida should be placed within the Cladida. The results of this study identify phylogenetic structure amongst the major early crinoid lineages and delineate the relative positions of crinoid higher taxa along a tree. Each valid higher taxon discussed herein requires a comprehensive treatment to delimit within‐lineage phylogenetic relationships.  相似文献   

19.
Phylogenetic systematic analysis of 24 taxa representing the rhabdocoel platyhelminths, based on a suite of 89 morphological characters, produced two equally parsimonious trees, 181 steps long, with a consistency index (CI) of 0.69 and a rescaled consistency index (RCI) of 0.56, differing only with respect to that portion of the tree containing Umagillidae, Acholadidae, Graffillinae, Pseudograffillinae, Pterastericolidae and Hypoblepharinidae. Our results accommodate all previously proposed sister taxa to the Neodermata in a single clade in which ((Dalyelliidae + Temnocephalida) Typhloplanidae) is the sister group of ((Fecampiidae +  Urastoma ) ( Udonella ((Aspidogastrea + Digenea) (Monogenea (Gyrocotylidea (Amphilinidea + Eucestoda)))))). Bootstrap and jackknife analyses indicate that the groupings of ((Dalyelliidae + Temnocephalida) Typhloplanidae) and of ((Fecampiidae +  Urastoma ) ( Udonella ((Aspidogastrea + Digenea) (Monogenea (Gyrocotylidea (Amphilinidea + Eucestoda)))))) are highly robust, with the latter clade having a CI of 90% and RCI of 82%. Disagreements among previous analyses of these taxa have been due to the influence of missing data for critical characters in key taxa and differences in the taxa analysed, rather than any inherent weakness in the morphological data. Non-phylogenetic systematic approaches to homology assessment and misconceptions regarding phylogenetic systematic methodology are discussed. Recent analyses combining sequence data with a subset of approximately 60% of the morphological characters should be re-assessed using the entire morphological database. Even if Udonella is a monogenean, it is most parsimonious to suggest that the common ancestor of the Neodermata had a vertebrate–arthropod two-host life cycle.  相似文献   

20.
Durvillaea (southern bull-kelp) is an economically and ecologically important brown algal genus that dominates many exposed, rocky coasts in the cold-temperate Southern Hemisphere. Of its five currently-recognized species, four are non-buoyant and restricted to the south-western Pacific, whereas one is both buoyant and widely distributed. Durvillaea has had an unsettled taxonomic history. Although its position within the brown algae (Phaeophyceae) has now been largely resolved through the use of molecular techniques, the taxonomic status of several Durvillaea species/morphotypes remains unresolved. Previous molecular phylogenetic studies of phaeophycean taxa have included few Durvillaea samples, and have consequently paid little or no attention to variation within this genus. The current study presents phylogenetic analyses of four genetic markers (mitchondrial: COI; chloroplast: rbcL; and nuclear: 18S and 28S) to resolve phylogenetic relationships within Durvillaea. Results support the monophyly of solid-bladed taxa D. willana, D. potatorum, and D. sp. A (an undescribed species from the Antipodes Islands), whereas the widespread, buoyant D. antarctica is paraphyletic, with solid-bladed D.chathamensis placed sister to a D. antarctica clade from northern NZ but within D. antarctica sensu lato. The phylogenetic and ecological diversity detected within D. antarctica indicate that it is a species complex of five deeply divergent clades. Under a phylogenetic species concept, Durvillaea can be interpreted as a complex of nine distinct evolutionary lineages, only one of which has an intercontinental distribution ('subantarctic'D. antarctica).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号