首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
The human nicotinic acetylcholine receptor (nAChR) subunit alpha9 gene (CHRNA9) codes for a component of the AChR in hair cells of the inner ear. While no direct evidence presently links this gene to known hearing disorders, it may underlie individual susceptibility to acoustic inner ear injury, and is associated with the autoimmune skin disorder Pemphigus vulgaris. Future studies will depend upon a thorough characterization of the nAChR alpha9 gene. CHRNA9 was localized to chromosome 4p15.1-->p14 by FISH analysis. Radiation hybrid mapping further localized the gene between markers D4S405 and D4S496 (Stanford G3 panel), and between markers WI-3875 and D4S1231 (Genebridge 4 panel), representing a distance of approximately 3.1 cR. The D4S405 marker has been linked to a non-syndromic form of hereditary hearing loss, DFNB-25. The gene contains five exons, separated by four introns. Exons 1-5 are 78, 145, 154, 532 and 877 bases, respectively. Introns 1-4 are 294, 1239, 11517, and 4571 bases, respectively. The intron-exon splice junction sites correlate identically with those of the rat alpha9 gene and are nearly identical to those of the human alpha10 gene. Sequence promoter analysis reveals a number of potential regulatory elements, including several in common with the nAChR alpha10 gene, whose expressed protein is assumed to combine with alpha9 in the inner ear.  相似文献   

3.
4.
The alpha9 and alpha10 nicotinic acetylcholine receptor (nAChR) subunits assemble to form the alpha9alpha10 nAChR subtype. This receptor is believed to mediate cholinergic synaptic transmission between efferent olivocochlear fibers and the hair cells of the cochlea. In addition alpha9 and/or alpha10 expression has been described in dorsal root ganglion neurons, lymphocytes, skin keratinocytes, and the pars tuberalis of the pituitary. Specific antagonists that selectively block the alpha9alpha10 channel could be valuable tools for elucidating its role in these diverse tissues. This study describes a novel alpha-conotoxin from the Western Atlantic species Conus regius, alpha-conotoxin RgIA (alpha-RgIA), that is a subtype specific blocker of the alpha9alpha10 nAChR. alpha-RgIA belongs to the alpha4/3 subfamily of the alpha-conotoxin family; sequence and subtype specificity comparisons between alpha-RgIA and previously characterized alpha4/3 toxins indicate that the amino acids in the C-terminal half of alpha-RgIA are responsible for its preferential inhibition of the alpha9alpha10 nAChR subtype.  相似文献   

5.
The alpha9 and alpha10 nicotinic cholinergic subunits assemble to form the receptor believed to mediate synaptic transmission between efferent olivocochlear fibers and hair cells of the cochlea, one of the few examples of postsynaptic function for a non-muscle nicotinic acetylcholine receptor (nAChR). However, it has been suggested that the expression profile of alpha9 and alpha10 overlaps with that of alpha7 in the cochlea and in sites such as dorsal root ganglion neurons, peripheral blood lymphocytes, developing thymocytes, and skin. We now report the cloning, total synthesis, and characterization of a novel toxin alpha-conotoxin PeIA that discriminates between alpha9alpha10 and alpha7 nAChRs. This is the first toxin to be identified from Conus pergrandis, a species found in deep waters of the Western Pacific. Alpha-conotoxin PeIA displayed a 260-fold higher selectivity for alpha-bungarotoxin-sensitive alpha9alpha10 nAChRs compared with alpha-bungarotoxin-sensitive alpha7 receptors. The IC50 of the toxin was 6.9 +/- 0.5 nM and 4.4 +/- 0.5 nM for recombinant alpha9alpha10 and wild-type hair cell nAChRs, respectively. Alpha-conotoxin PeIA bears high resemblance to alpha-conotoxins MII and GIC isolated from Conus magus and Conus geographus, respectively. However, neither alpha-conotoxin MII nor alpha-conotoxin GIC at concentrations of 10 microM blocked acetylcholine responses elicited in Xenopus oocytes injected with the alpha9 and alpha10 subunits. Among neuronal non-alpha-bungarotoxin-sensitive receptors, alpha-conotoxin PeIA was also active at alpha3beta2 receptors and chimeric alpha6/alpha3beta2beta3 receptors. Alpha-conotoxin PeIA represents a novel probe to differentiate responses mediated either through alpha9alpha10 or alpha7 nAChRs in those tissues where both receptors are expressed.  相似文献   

6.
Administration of recombinant human keratinocyte growth factor (rHuKGF, Delta23N-KGF, palifermin) protects the lung against a variety of injurious stimuli. The exact mechanisms leading to lung protection are unknown. Alterations in the non-neuronal cholinergic system of the lung might be involved, as vital pulmonary functions are regulated by acetylcholine. Here, we investigated the effect of KGF on the expression of nicotinic acetylcholine receptor subunits alpha7, alpha9 and alpha10 in rat lungs. Adult rats were treated via intratracheal instillation with rHuKGF or with an equivalent volume of PBS. The expression of nicotinic acetylcholine receptor subunits was analyzed by real-time RT-PCR, immunoblotting and immunohistochemistry. Treatment with rHuKGF led to a decreased expression of nicotinic receptor subunit alpha7 in the total lung. In contrast, the expression of the receptor subunits alpha9 and alpha10 was up-regulated. In conclusion, nicotinic acetylcholine receptors are differentially regulated by KGF treatment in vivo, which might result in changes in the biological effects of acetylcholine.  相似文献   

7.
8.
9.
Biallas S  Wilker S  Lips KS  Kummer W  Grando SA  Padberg W  Grau V 《Life sciences》2007,80(24-25):2286-2289
The success of clinical lung transplantation is poor in comparison to other solid organ transplants and novel therapeutic approaches are badly needed. In the view of the recent discovery of anti-inflammatory pathways mediated via nicotinic acetylcholine receptors, we investigated changes in this system in pulmonary isografts and allografts by immunohistochemistry. Lung transplantation was performed in the isogeneic Lewis to Lewis rat strain combination. For allogeneic transplantation Dark Agouti rats were used as donors. Nicotinic alpha9 and alpha10 acetylcholine receptor subunits were detected on alveolar macrophages as well as in the lung parenchyma of native and transplanted lungs. The expression of both receptor subunits was up-regulated in the parenchyma of day 4 allografts. These allografts were characterized by accumulations of alveolar macrophages strongly expressing the alpha9 and the alpha10 receptor subunit. Therapeutic application of nicotinic agonists might down-modulate pro-inflammatory functions of alveolar macrophages and protect pulmonary transplants.  相似文献   

10.
Acetylcholine (ACh) and its receptors play a crucial role in bladder physiology. Here, we investigated the presence of muscarinic receptor subtypes (MR) and nicotinic acetylcholine receptor (nAChR) alpha-subunits in the mouse urothelium by RT-PCR and immunohistochemistry. With RT-PCR, we detected mRNAs coding for all of the five different MR subtypes and for the nicotinic receptor subunits alpha2, alpha4, alpha5, alpha6, alpha7, alpha9 and alpha10, whereas the alpha3-subunit was not expressed. Using immunohistochemistry, we localised a panel of acetylcholine receptors in the different layers of the murine bladder urothelium, with predominant appearance in the basal plasma membrane of the basal cell layer and in the apical membrane of the umbrella cells. M2R and subunit alpha9 were observed exclusively in the umbrella cells, whereas the MR subtypes 3-5 and the nAChR subunits alpha4, alpha7 and alpha10 were also detected in the intermediate and basal cell layers. The subunit alpha5 was localised only in the basal cell layer. In conclusion, the murine urothelium expresses multiple cholinergic receptors, including several subtypes of both MR and nAChR, which are differentially distributed among the urothelial cell types. Since these receptors have different electrophysiological and pharmacological properties, and therefore are considered to be responsible for different cellular responses to ACh, this differential distribution is expected to confer cell type-specificity of cholinergic regulation in the bladder urothelium.  相似文献   

11.
12.
13.
14.
Neuronal nicotinic acetylcholine receptors (nAChRs) are thought to be involved in the pathogenesis of Alzheimer's disease (AD). Interestingly, in the brains of patients with this disease, losses of several subtypes of nAChRs on neurons have been reported, while an increase in alpha7 nAChRs was recently detected in the astrocytes. However, little is presently known about the expressions of individual subunits of nAChR on rat astrocytes in primary culture or the possible influence of exposure to beta-amyloid peptide (Abeta), a neuropathological hallmark of AD, on this expression. Thus, in the present investigation the levels of individual nAChR subunits on primary rat astrocytes and the possible direct influence of Abetas on the receptors were examined by RT-PCR, Western blotting, monitoring intracellular free calcium and immunohistochemistry. The alpha4, alpha7, beta2 and beta3 subunits and related calcium channel responses were found in these cells, whereas neither alpha2 nor alpha3 could be detected. Elevation in the levels of alpha7, alpha4 and beta2 mRNAs and proteins were observed in astrocytes exposed to 0.1-100nM Abeta(1-42). In contrast, incubation with 1muM Abeta(1-42) or Abeta(35-25) did not affect these levels. We propose that the enhanced expression of alpha7, alpha4 and beta2 nAChRs by astrocytes stimulated directly by nanomolar concentrations of Abeta(1-42) might be related to ongoing defensive or compensative mechanisms.  相似文献   

15.
A series of epibatidine analogues was synthesized and characterized in vitro. These compounds are high affinity ligands for the nicotinic acetylcholine receptors (nAChR). They display binding selectivity for the alpha(x)beta2 subtypes of nAChRs over the alpha(x)beta4 subtypes, and especially for the alpha4beta2 and alpha2beta2 subtypes. Furthermore, most of these new nicotinic compounds display little, if any, agonist activities at alpha3beta4 nAChR. As a result they might become lead structures for the design and synthesis of highly selective ligands for nAChR subtypes containing the beta2 subunit.  相似文献   

16.
Abstract: The present study further investigated whether nicotinic acetylcholine receptor (nAChR) subtypes differ in their ability to up-regulate following chronic exposure to nicotinic agonists. Seven nicotinic agonists were studied for their ability to influence the number of chick α4β2 nAChR binding sites stably transfected in fibroblasts (M10 cells) following 3 days of exposure. The result showed a positive correlation between the K i values for binding inhibition and EC50 values for agonist-induced α4β2 nAChR up-regulation. The effects of epibatidine and nicotine were further investigated in human neuroblastoma SH-SY5Y cells (expressing α3, α5, β2, and β4 nAChR subunits). Nicotine exhibited a 14 times lower affinity for the nAChRs in SH-SY5Y cells as compared with M10 cells, whereas epibatidine showed similar affinities for the nAChRs expressed in the two cell lines. The nicotine-induced up-regulation of nAChR binding sites in SH-SY5Y cells was shifted to the right by two orders of magnitude as compared with that in M10 cells. The epibatidine-induced up-regulation of nAChR binding sites in SH-SY5Y cells was one-fourth that in M10 cells. The levels of mRNA of the various nAChR subunits were measured following the nicotinic agonist exposure. In summary, the various nAChR subtypes show different properties in their response to chronic stimulation.  相似文献   

17.
Mouse B lymphocytes express several nicotinic acetylcholine receptor (nAChR) subtypes, their exact functions being not clearly understood. Here we show that α7 nAChR was present in about 60%, while α4β2 and α9(α10) nAChRs in about 10% and 20% of mouse spleen B lymphocytes, respectively; Balb/c and C57Bl/6 mice possessed different relative amounts of these nAChR subtypes. α4β2 and α7, but not α9(α10) nAChRs, were up-regulated upon B lymphocyte activation in vitro. Flow cytometry and sandwich ELISA studies demonstrated that α7 and α9(α10) nAChRs are coupled to CD40, whereas α4β2 nAChR is coupled to IgM. B lymphocytes of both α7(-/-) and β2(-/-) mice responded to anti-CD40 stronger than those of the wild-type mice, whereas the cells of β2(-/-) mice responded to anti-IgM worse than those of the wild-type or α7(-/-) mice. Inhibition of α7 and α9(α10) nAChRs with methyllicaconitine resulted in considerable augmentation of CD40-mediated B lymphocyte proliferation in cells of all genotypes; stimulation of α4β2 nAChRs with epibatidine increased the IgM-mediated proliferation of the wild-type and α7(-/-), but not β2(-/-) cells. Inhibition of α9(α10) nAChRs with α-conotoxin PeAI exerted weak stimulating effect on CD40-mediated proliferation. This nAChR subtype was up-regulated in α7(-/-) B-cells. α7 nAChRs were found recruited to immune synapses between human T and B lymphocytes, both of which produced acetylcholine. It is concluded that α7 nAChR fulfills inhibitory CD40-related mitogenic function, α4β2 nAChR produces a stimulatory IgM-related effect, while α9α10 nAChR is a "reserve" receptor, which partly compensates the absence of α7 nAChR in α7(-/-) cells. Acetylcholine is an additional mediator to modulate activation of interacting T and B lymphocytes.  相似文献   

18.
Summers AE  Whelan CJ  Parsons ME 《Life sciences》2003,72(18-19):2091-2094
In the present study we have used RT-PCR to investigate nicotinic acetylcholine receptor (nAChR) subunit expression, and studied the effect of nicotine on TNFalpha-induced cytokine (IL-8) release in the epithelial cell line HT29. RNA was extracted using a commercial kit and amplified by RT-PCR. RT-PCR products were separated by electrophoresis and visualised using ethidium bromide. IL-8 release was measured by ELISA from cells activated for 6 h with TNFalpha (50 ng ml(-1)) in the absence and presence of nicotine (10(-11)-10(-6) M). HT29 cells contained mRNA for beta1, alpha4, alpha5, and alpha7 nAChR subunits. Activation of HT29 cells increased IL-8 release from undetectable amounts to 3.92 +/- 0.51 ng ml(-1) (n = 5). Nicotine significantly inhibited TNFalpha-induced IL-8 release in a concentration related manner with peak inhibition occurring at 10(-7) M (2.39 +/- 0.78 ng ml(-1), n = 5). Our data suggests that, while HT29 cells express mRNA for nAChR subunits, the only nAChR subunits that could form functional receptors and inhibit IL-8 release are alpha7.  相似文献   

19.
20.
The predominant nicotinic acetylcholine receptor (nAChR) expressed in vertebrate brain is a pentamer containing alpha4 and beta2 subunits. In this study we have examined how temperature and the expression of subunit chimeras can influence the efficiency of cell-surface expression of the rat alpha4beta2 nAChR. Functional recombinant alpha4beta2 nAChRs, showing high affinity binding of nicotinic radioligands (K(d) = 41 +/- 22 pM for [(3)H]epibatidine), are expressed in both stably and transiently transfected mammalian cell lines. Despite this, only very low levels of alpha4beta2 nAChRs can be detected on the cell surface of transfected mammalian cells maintained at 37 degrees C. At 30 degrees C, however, cells expressing alpha4beta2 nAChRs show a 12-fold increase in radioligand binding (with no change in affinity), and a 5-fold up-regulation in cell-surface receptors with no increase in total subunit protein. In contrast to "wild-type" alpha4 and beta2 subunits, chimeric nicotinic/serotonergic subunits ("alpha4chi" and "beta2chi") are expressed very efficiently on the cell surface (at 30 degrees C or 37 degrees C), either as hetero-oligomeric complexes (e.g. alpha4chi+beta2 or alpha4chi+beta2chi) or when expressed alone. Compared with alpha4beta2 nAChRs, expression of complexes containing chimeric subunits typically results in up to 20-fold increase in nicotinic radioligand binding sites (with no change in affinity) and a similar increase in cell-surface receptor, despite a similar level of total chimeric and wild-type protein.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号