首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Two14C-dated pollen profiles from mires in the steppe belt of southern Russia are presented. On the basis of these and data from earlier investigations, the Holocene forest history of the southern part of Russia and Ukraine is reconstructed. The steppe belt is very sensitive to climatic oscillations and, in particular, to changes in evapotranspiration. The most favourable climate occurred between 6000 and 4500 B.P. (6800–5200 cal. B.P.), when forest attained its maximum extent in the steppe belt. The period 4500–3500 B.P. (5200–3800 cal. B.P.) was characterised by drier climate with the most arid phase occurring between 4200–3700 B.P. (4700–4000 cal. B.P.). During arid phases, the area under forest and also peat accumulation rates declined. Subsequently, a number of less pronounced climatic oscillations occurred such as in the period 3400/3300–2800 B.P. (3600/3500–2900 cal. B.P.) when there was a return to more humid conditions. During the last 2500 years, the vegetation cover of the steppe belt in southern Russia and Ukraine took on its present-day aspect. On the one hand, there is close correlation between the Holocene vegetation history of southern Russia and Ukraine and, on the other hand, the steppe belt of Kazakhstan and transgressions in the Caspian sea. Human impact on the natural vegetation became important from the Bronze Age onwards (after 4500 B.P.; 5200 cal. B.P.). Particular attention is given to the history of Scots pine (Pinus sylvestris), which had a much wider distribution in the southern part of eastern Europe in the early Holocene. The reduction in range during recent millennia has come about as a result of the combined effects of both climatic deterioration and increased human impact.  相似文献   

2.
Ecogeographical regionalization is the basis for spatial differentiation of biodiversity research. In view of the principle of international ecogeographical regionalization, this study has applied multivariate analysis and GIS method and based on some ecogeographical attributes limited to the distribution of plant and vegetation, including climatic factors, such as minimum temperature, mean temperature of the coldest month, mean temperature of the wannest month, annual average temperature, precipitation of the coldest month, precipitation of the wannest month, annual precipitation, CV of annual precipitation, biological factors such as vegetation types, vegetation division types, NPP, fiorisitic types, fauna types, abundance of plant species, genus and endemic genus; soil factors such as soil types, soil pH;topographical factors as longitude, latitude and altitude etc. The ecogeographical regionalization for biodiversity in China was made synthetically by using fuzzy cluster method. Four classes of division were used, viz., biodomain, subbiodomain, biome and bioregion. Five biodomains, seven subbiodomains and eighteen biomes were divided in China as follows: Ⅰ Boreal forest biodomain. Ⅰ A Eurasian boreal forest subbiodomain. Ⅰ A1 Southern Taiga mountain cold-temperate coniferous forest biome; Ⅰ A2 North Asian mixed coniferous-broad-leaved forest biome. Ⅱ Northern steppe and desert biodomain. Ⅱ B Eurasian steppe subbiodomain. Ⅱ BI Inner Asian temperate grass steppe biome; Ⅱ B2 Loess Plateau warm-temperate forest/shmb steppe biome. Ⅱ C Asia-Mrica desert subbiodomain. Ⅱ C1 Mid-Asian temperate desert biome; Ⅱ C2 Mongolian/Inner Asian temperate desert biome. Ⅲ East Asian biodomain. Ⅲ D East Asian deciduous broad-leaved forest subbiodomain. Ⅲ D1 East Asian deciduous broad-leaved forest biome, Ⅲ E East Asian evergreen broad-leaved forest subbiodomain. Ⅲ El East Asian mixed deciduous-evergreen broad-leaved forest biome; Ⅲ E2 East Asian evergreen broad-leaved forest biome; Ⅲ E3 East Asian monsoon evergreen broad-leaved forest biome; Ⅲ FA Western East Asian mountain evergreen broadleaved forest biome. Ⅳ Palaeotropical subdomain. IV F India-Malaysian tropical forest subbiodomain.Ⅳ Fl Northern tropical rain forest/seasonal rain forest biome; Ⅳ F2 Tropical island coral reef vegetation biome. Ⅴ Asian plateau biodomain. Ⅴ G Tibet Plateau subbiodomain. Ⅴ G1 Tibet alpine highcold shrub meadow biome;Ⅴ G2 Tibet alpine high-cold steppe biome; Ⅴ G3 Tibet alpine high-cold desert biome; Ⅴ G4 Tibet alpine temperate steppe biome; Ⅴ G5 Tibet alpine temperate desert biome.  相似文献   

3.
本文依据内蒙古自治区四个考古地点的孢粉分析资料,指出呼伦贝尔盟东部地区,在11400±230年前,不仅湖沼棋布,而且生长着由松、榆、椴、胡桃等组成的繁茂的温带针叶—阔叶混交林。公元前1700年,昭乌达盟敖汗旗一带,分布着暖温带针叶—阔叶混交林,从花粉分析说明那时的人类已摆脱了单纯狩猎,开始种植作物、饲养动物。自晚更新世以来,内蒙古植被由混交林向草原迅速的发展。  相似文献   

4.
Biome reconstruction from pollen and plant macrofossil data provides an objective method to reconstruct past vegetation. Biomes for Africa and the Arabian peninsula have been mapped for 6000 years bp and provide a new standard for the evaluation of simulated palaeovegetation distributions. A test using modern pollen data shows the robustness of the biomization method, which is able to predict the major vegetation types with a high confidence level. The application of the procedure to the 6000 years data set (pollen and plant macrofossil analyses) shows systematic differences from the present that are consistent with the numerous previous regional and continental interpretations, while providing a more extensive and more objective basis for such interpretations. Madagascar, eastern, southern and central Africa show only minor changes in terms of biomes, compared to present. Major changes in biome distributions occur north of 15°N, with steppe in many low-elevation sites that are now desert, and temperate xerophytic woods/scrub and warm mixed forest in the Saharan mountains. These shifts in biome distributions imply significant changes in climate, especially precipitation, between 6000 years and present, reflecting a change in monsoon extent combined with a southward expansion of Mediterranean influence.  相似文献   

5.
Data from the Hill of Six Lakes, in the northwestern Brazilian Amazon region, provide three records of paleoclimatic and vegetation change in lowland Amazonia that span the last 170,000 years. Three lakes, Verde, Pata and Dragão, which occupy separate watersheds on the hill, provide the most detailed image yet obtained of ice-age conditions in lowland Amazonia. Well-dated sedimentary records for fossil palynological, charcoal, cation, and pigment, data are presented.The data indicate the continuous presence of mesic forest throughout the last ice age. Oscillations of lake level are recorded and the lowstands are attributed to reduced precipitation inputs to systems delicately balanced between water loss (leakage through the floor of the basin) and gain (precipitation). Gross stratigraphy, algal remains, and paleochemistry suggest that the stands of high and low lake level were cyclic, apparently correlating precessional orbital variation. Times of lake lowstand coincide with wet season (December-January-February, DJF) insolation minima. The strongest of eight lowstand cycles occurred ca. 35,000 to 27,000 cal BP.Even during lowstand episodes, pollen is well preserved and provides a clear signal of uninterrupted forest cover. The principal lowland elements are continuously present in the record, suggesting the long-term (Quaternary) availability of the lowland forest biome in this region. However, during the late Pleistocene the forest changed in composition with the expansion or invasion of montane floral elements creating communities of the mesic forest biome without modern analogs. While precipitation cycles were causing lake levels to rise and fall, the principal influence on vegetation appears to have been cooling. In the late Pleistocene, the population expansion of montane elements at lower elevations is consistent with a cooling of 4-5 °C.  相似文献   

6.
New pollen and plant macrofossil data, backed by radiocarbon dates, from the Kulikovo battlefield area in the forest-steppe region of the Upper Don River basin (central part of European Russia) indicate that the area was covered by mosaic vegetation in the second half of the Holocene. Steppe communities dominated during the mid—late Atlantic (7.2–5.7?cal.?kyr b.p.) and early Subatlantic (2.7–2.4?cal.?kyr b.p.), while forest-steppe dominated during the Subboreal (2.7–5.7?cal.?kyr b.p.), middle and late Subatlantic (2.4?cal.?kyr b.p. – present). Climatic reconstructions based on these data show that landscape dynamics in the region were most probably driven by changes in effective moisture: an excess of precipitation over evaporation. Even small reductions in annual precipitation, accompanied by a rise in summer temperatures by 1–3°C above present values, were sufficient to increase the proportion of steppe communities within this landscape complex, and also probably resulted in higher frequencies of wildfires. Signals of anthropogenic disturbance of vegetation are clearly pronounced in the pollen and plant macrofossil records since the middle Atlantic. However, human-induced changes in the vegetation remain subtle until the medieval period.  相似文献   

7.
The Palearctic forest-steppe biome is a narrow vegetation zone between the temperate forest and steppe biomes, which provides important habitats for many endangered species and represents an important hotspot of biodiversity. Although the number of studies on forest–grassland mosaics is increasing, information currently available about the general compositional and structural patterns of Eurasian forest-steppes is scarce. Our study aimed to compare the habitat structure, species composition and diversity patterns of two distant sandy forest-steppes of Eurasia. We compared 72 relevés made in the main habitat components (forest, forest edge and grassland) of sandy forest-steppes in three Hungarian and three Kazakh sites. The size of the plots was 25 m2. Species number, Shannon diversity and species evenness values were calculated for each plot. Fidelity calculations and linear mixed effects models were used for the analyses. We found that the vegetation and diversity patterns of the two forest-steppes are similar and their components play important roles in maintaining landscape-scale diversity. Despite the higher species richness in Hungary, Shannon diversity was higher in Kazakhstan. The deciduous forest edges of both areas had significantly higher species richness than the neighbouring habitats (forests and grasslands); therefore they can be considered local biodiversity hotspots. Due to the special characteristics of this vegetation complex, we emphasize the high conservation value of all landscape components as a coherent system throughout the entire range of the Eurasian forest-steppe biome.  相似文献   

8.
A new pollen record from Lago di Vico (core V1) provides fundamental new information towards reconstruction of flora and vegetation history in central Italy during the last 90 000 years. The chronological framework is secured by seventeen AMS14C dates, one40Ar/39Ar date and tephra analyses. At the base of the pollen record, i.e. shortly after the40Ar/39Ar date 87 000±7000 B.P., three phases with significant expansion of trees are recorded in close succession. These forest phases, which stratigraphically correspond to St Germain II (and Ognon?) and precede pleniglacial steppe vegetation, are designated by the local names Etruria I, Etruria II and Etruria III. During the pleniglacial, a number of fluctuations of angiosperm mesophilous trees suggest the presence of tree refugia in the area. The lowest pollen concentration values are recorded at ca. 22 000 B.P. which corresponds with other pollen records from the region. The late-glacial is characterized by an expansion in the arboreal pollen curves that is less pronounced, however, than in other pollen profiles from Italy. The Holocene part of the profile is consistently dominated by deciduous oak pollen. No major changes in arboreal pollen composition are recorded but several marked and sudden declines of the tree pollen concentration suggest that the forest cover underwent dramatic changes. Clear evidence for human impact is recorded only when cultivated crops became important which dates to ca. 2630±95 B.P.  相似文献   

9.
Palynological analyses of Holocene deposits located about 2 km to the southwest of the Lake Chaohu, Anhui Province, documented well the local vegetation history, its inferred environment and human impacts for the first time. An evergreen and deciduous mixed broad-leaved forest dominated by Cyclobalanopsis and Quercus existed from ca. 10,500 cal b.p. and became fully developed between ca. 8,250 and 7,550 cal b.p. Notable fluctuations occurred in the main components of the flora indicated by the decline in Cyclobalanopsis and other arboreal plants (AP), and an increase in terrestrial herbs between ca. 7,550 and 3,750 cal b.p., inferring the progressive opening of the forest under considerable human interference, which largely agrees with the archaeological evidence. After ca. 3,750 cal b.p., the broad-leaved forest largely gave way to terrestrial herbs, and never again recovered. Pinus continued to rise alongside the majority of herbs between ca. 3,750 and 2,000 cal b.p., then also declined after ca. 2,000 cal b.p. Human influence on the natural vegetation displayed in the pollen diagram seems to increase greatly up the core. The disappearance of broad-leaved forest indicates significant human impact after ca. 3,750 cal b.p., which is consistent with both the archaeological evidence and historical records. From that time the natural environment in the study area was subjected to long-standing pressure from increasing farming and population.  相似文献   

10.
Interdisciplinary studies of the sediments of Lago dell’Accesa started in 2001. We present here results from the palynological study. The pollen diagram provides a record of vegetation and climatic change spanning over 15,000 years. The oldest pollen spectra show a late-glacial steppe vegetation typical of central and southern Italy during this period. The Late-glacial Interstadial, interrupted by two cooling events, is dominated by open deciduous oak forests. The Younger Dryas is represented by 150 cm of sediment and shows the presence of steppic vegetation. The Holocene vegetation is characterised by alternating dominance of deciduous oaks and Quercus ilex. The three zones characterised by Q. ilex are accompanied by peat layers marking lake-level lowering at ca. 8600–7900, 4600–4300 and 3700–2800 cal b.p. Between approximately 9000 and 6000 cal b.p. extensive Abies-forests existed on the Colline Metallifere located 15–20 km to the north and northeast of the lake. Local fir populations may also have existed by the lake. Human impact starts at approximately 8000 cal b.p. during the Neolithic period, and increases at ca. 4300 cal b.p. Castanea and Juglans pollen is recorded from ca. 2800 cal b.p. The impact of the Etruscan settlement near the lakeshore is shown in the increasing values of arable crops, species of secondary forest canopy (Ericaceae, Pinus, Pistacia, Myrtus) and anthropogenic indicators (Chenopodiaceae, Plantago lanceolata, Rumex etc).  相似文献   

11.
Indications for the speed and timing of past altitudinal treeline shifts are often contradictory. Partly, this may be due to interpretation difficulties of pollen records, which are generally regional rather than local proxies. We used pedoanthracology, the identification and dating of macroscopic soil charcoal, to study vegetation history around the treeline in the northern Ecuadorian Andes. Pedoanthracology offers a complementary method to pollen-based vegetation reconstructions by providing records with high spatial detail on a local scale. The modern vegetation is tussock grass páramo (tropical alpine vegetation) and upper montane cloud forest, and the treeline is located at ca. 3600 m. Charcoal was collected from soils in the páramo (at 3890 and 3810 m) and in the forest (at 3540 m), and represents a sequence for the entire Holocene.The presence of páramo taxa throughout all three soil profiles, especially in combination with the absence of forest taxa, shows that the treeline in the study area has moved up to its present position only late in the Holocene (after ca. 5850 cal years BP). The treeline may have been situated between 3600 m and 3800 m at some time after ca. 4900 cal years BP, or it may never have been higher than it is today. The presence of charcoal throughout the profiles also shows that fires have occurred in this area at least since the beginning of the Holocene.These results contradict interpretations of palaeological data from Colombia, which suggest a rapid treeline rise at the Pleistocene–Holocene transition. They also contradict the hypothesis that man-made fires have destroyed large extents of forest above the modern treeline. Instead, páramo fires have probably contributed to the slowness of treeline rise during the Holocene.  相似文献   

12.
Palynological investigations have been carried out on a sediment core from ancient Lake Lerna, a former fresh water lagoon in the western part of the Argive plain, Peloponnese, southern Greece. The sequence starts at 6800 B.P. (5700 cal B.C.). The lowest part of the pollen diagram shows a period of open deciduous oak woods, which may have been influenced by human impact already (Zone I). It is followed by a period of dense deciduous oak woods (Zone II), which lasted until the beginning of the Bronze Age ca. 4800 B.P. (3500 cal B.C.). Later, the diagram indicates strong human influence such as woodland clearance, the spread of maquis, phrygana and pine in Zones IIIa-IV. During the Archaic, Geometric and Classical periods after ca. 2700 B.P. (800 cal B.C.) there is evidence of a phase of extensive olive farming (Zone IIIb). In the same zone, after a period of scattered finds, there is an almost continuous Juglans curve. Zone IV is characterised by high pine values. In Zones I-II the evidence of evergreen Mediterranean plants is surprisingly small. In times with no discernible human influence (Zone II), deciduous oaks dominate, with no evidence for a climax vegetation of the Oleo-Ceratonion alliance. Olea europaea is the only species of that alliance traceable by its pollen in the diagram, while Ceratonia pollen is totally absent.  相似文献   

13.
A high resolution marine pollen record from site GeoB1023, west of the northern Namib desert provides data on vegetation and climate change for the last 21 ka at an average resolution of 185 y. Pollen and spores are mainly delivered to the site by the Cunene river and by surface and mid-tropospheric wind systems. The main pollen source areas are located between 13°S and 21°S, which includes the northern Namib desert and semi-desert, the Angola-northern Namibian highland, and the north-western Kalahari. The pollen spectra reflect environmental changes in the region. The last glacial maximum (LGM) was characterised by colder and more arid conditions than at present, when a vegetation with temperate elements such as Asteroideae, Ericaceae, and Restionaceae grew north of 21°S. At 17.5 ka cal. B.P., an amelioration both in temperature and humidity terminated the LGM but, in the northern Kalahari, mean annual rainfall in the interval 17.5-14.4 ka cal. B.P. was probably 100–150 mm lower than at present (400–500 mm/y). The Late-glacial to early Holocene transition includes two arid periods, i.e. 14.4–12.5 and 10.9–9.3 ka cal. B.P. The last part of the former period may be correlated with the Younger Dryas. The warmest and most humid period in the Holocene occurred between 6.3 and 4.8 ka cal. B.P. During the last 2000 years, human impact, as reflected by indications of deforestation, enhanced burning and overgrazing, progressively intensified.  相似文献   

14.
This paper presents results of pollen analysis on sediments of core Cao 2 from Dianchi Lake. Four pollen zones are defined, namely zone I, which is further divided into four subzones, zone Ⅱ, zone Ⅲ and zone Ⅳ. Zone Ⅰ(ca. 47600–11800 yrs B. P.) is characterized by low land pollen sedimentation rates and constant presence of Abies pollen. In zone Ⅱ (ca. 11800–6900 yrs B. P.) broad-leaved tree pollen increases and Abies pollen gradually disappears. In zone Ⅲ (ca. 6900–3800 yrs B. P.) evergreen broad-leaved-tree pollen and total land pollen influx reach their maximum values while, Tsuga pollen decreases. Zone Ⅳ shows a great decreases in pollen influx of various pollen types and a increase in Monolete psilate spores. In the past 40000 years vegetation in this area trend changes from a dominantion of coniferous tree to an evergreen broad-leaved forest, co-existing or mixing deciduous broadleaved forest and coniferous forest. In the past 3800 years, due to climate changes and / or human activities, the vegetation cover in this area has been greatly reduced. The above vegetation changes indicate a climate change process from cool and humid, to warm and humid and finally to mild and dry.  相似文献   

15.
Biomization provides an objective and robust method of assigning pollen spectra to biomes so that pollen data can be mapped and compared directly with the output of biomgeographic models. We have tested the applicability of this procedure, originally developed for Europe, to assign modern surface samples from China to biomes. The procedure successfully delineated the major vegetation types of China. When the same procedure was applied to fossil pollen samples for 6000 years ago, the reconstructions showed systematic differences from present, consistent with previous interpretations of vegetation changes since the mid-Holocene. In eastern China, the forest zones were systematically shifted northwards, such that cool mixed forests displaced taiga in northeastern China, while broad-leaved evergreen forest extended c. 300 km and temperate deciduous forestc. 500–600 km beyond their present northern limits. In northwestern China, the area of desert and steppe vegetation was reduced compared to present. On the Tibetan Plateau, forest vegetation extended to higher elevations than today and the area of tundra was reduced. These shifts in biome distributions imply significant changes in climate since 6000 years ago that can be interpreted qualitatively as a response to orbital forcing and its secondary effects on the Asian monsoon.  相似文献   

16.
A 9200 14C year fossil pollen record from a small kettle lake in central Maine, northeast U.S.A., records the development of nearby upland vegetation throughout the Archaic, Ceramic, and Historic periods of human history. The Early Archaic period (9000 to 8000 B.P.) began as open woodland dominated by Picea, Populus, and Larix, which was replaced by Pinus forest. During the Middle Archaic (8000-6000 B.P.) Tsuga-dominated forest, which developed ca. 7400 B.P., was followed by Pinus forest (ca. 6400 B.P.). The Late Archaic (6000-3000 B.P.) was a period of great transition; Tsuga forest developed again ca. 5700 B.P., but was abruptly replaced by northern hardwood forest ca. 4700 B.P. That Late Archaic expansion of hardwoods would have provided better forage for beaver. Coincidentally, boreal wetland mammals such as beaver (Castor canadensis) and muskrat (Ondatra zibethicus) increase in faunal assemblages of local archaeological sites, while remains of anadromous fish decrease. We postulate that the apparent increase in human populations throughout the region during the Late Archaic may be attributed to an increase in the resource base within both upland and wetland areas resulting from the development of hardwood forest in response to climatic cooling.  相似文献   

17.
Yellowstone National Park has been an important location for paleoecologic studies that focus on the use of charcoal data to reconstruct past fire activity and on the role of climate variations in shaping past vegetation and fire regimes. One hypothesis, which has been explored in other parts of the western U.S., is the idea that present-day summer-dry and summer-wet precipitation regimes were intensified during the early Holocene as a result of greater-than-present summer insolation and its effect on atmospheric circulation patterns. In Yellowstone, this hypothesis was previously examined at two sites, one in summer-wet and one in summer-dry precipitation regions. The records showed variation in both fire and vegetation history that supported the hypothesis. We present a fire and vegetation history from Blacktail Pond, located in Pseudotsuga parkland in the transitional region. The Blacktail Pond data indicate the following ecological history: prior to 12,000 cal yr BP, the site supported tundra vegetation and fire episodes were infrequent. Between 12,000 and 11,000 cal yr BP, PiceaPinus parkland was established and fire activity increased; these changes are consistent with increasing temperature, as a result of rising summer insolation. From 11,000 to 7600 cal yr BP, the presence of a closed forest of Pinus and some Picea is attributed to high levels of winter moisture, but high fire activity indicates that summers were drier than at present. After 7600 cal yr BP, the presence of forest and steppe vegetation in combination with high fire activity suggest that middle-Holocene conditions were warm and dry. The decrease in Picea and Betula in the last 4000 cal yr indicates continued drying in the late Holocene, although fire-episode frequency was relatively high until 2000 cal yr BP. The pollen data at Blacktail Pond and other low-elevation sites in the northern Rocky Mountains suggest a widespread vegetation response in summer-wet regions to effectively wetter conditions in the early Holocene and decreased moisture in the middle and late Holocene. In contrast, the more-variable fire history among the three sites implies either that (1) summer moisture stress and fire conditions are related to year-round moisture balance and not well predicted by the hypothesis, (2) the transitional area between summer-wet and summer-dry precipitation regimes experienced complicated shifts in effective moisture through time, and/or (3) fire-episode data have a limited source area that makes it difficult to separate local influences from regional climate changes in understanding long-term variations in fire-episode frequency.  相似文献   

18.
A detailed,14C-dated, pollen profile from Steerenmoos, a raised bog in the uplands of the southern Black Forest (Schwarzwald) is presented. The Late-glacial and early Holocene vegetation history conforms to the known pattern of forest dynamics for that region. At ca. 6100 cal. B.P.,Abies replaced the mixed oak forest, which is in contrast to adjacent regions whereFagus spread beforeAbies. From the Subboreal onwards,Fagus expanded and slowly largely replacedAbies. The mire developed from a fen to a raised bog. The mountain pine (Pinus mugo ssp.rotundata) on the present-day bog surface is a result of medieval burning. Cereal pollen are first recorded in the Neolithic (7600 cal. B.P.) and there is a closed curve forPlantago Lanceolata — a good indicator of human impact — since the Bronze Age (4000 cal. B.P.). On the basis of the cereal pollen record nine human impact phases (HIP) are described. HIP 1 and 2, which are short, date to ca. 7600 and 6700 cal. B.P., respectively, in a mixed oak forest context and are characterized by declines inCorylus, Tilia, Ulmus and bySalix (but no major deforestation) and peaks in charcoal and loss-on-ignition curves. HIP 3 and 4, which are short and weak, date to ca. 6000 and 5300 cal. B.P., respectively, and occur in the context of anAbies alba forest. The Bronze Age and Iron Age HIPs 5-7 are more intense and of longer duration than the Neolithic phases and result in a decline inAbies and an increase inFagus. The early medieval HIP 8, although rather weak, probably finds expression also in an archaeological artefact, namely a dug-out boat from the near-by Schluchsee. Finally, the late Medieval HIP 9 resulted in a major transformation in the landscape. It is argued that the earlier HIPs are not a reflection of distant events in the lowland valleys of the Rhine, Danube or Neckar but reflect more or less local developments.  相似文献   

19.
The vegetation of a forest-steppe region in Hustain Nuruu, Mongolia, was studied by a phytocoenological approach. Eleven plant communities were recognized, comprising four steppe communities, two meadow communities, a tussock grassland, two shrub communities, a scrub community and a woodland community. The botanical and ecological characteristics of the different communities are discussed, with reference to the existing classification of Mongolian plant communities. Analysis of the present data indicates that a refinement or extension of the classification system is desirable, especially concerning the steppe(-related) communities. Discussion of the relative distribution of steppe and forest reveals that in the relatively dry location of Hustain Nuruu grassland and shrubland dominate the natural vegetation (88% of the area). Forest covers ca. 5% of the area, it is limited to sites where ground water is within rooting depth: north slopes above 1400 m (Betula platyphylla woodland) and along erosion gullies (fragmentary Ulmus pumila gallery woodland). Under natural conditions forest cover might reach 12%, but it is speculated that wild ungulates could maintain its extension at a lower level. The importance of forest is greater in forest-steppe regions with higher rainfall, but the factors determining the distribution of grassland and forest are expected to be similar.  相似文献   

20.
The palynostratigraphy of two sediment cores from Soppensee, Central Switzerland (596 m asl) was correlated with nine regional pollen assemblage zones defined for the Swiss Plateau. This biostratigraphy shows that the sedimentary record of Soppensee includes the last 15 000 years, i.e. the entire Late-glacial and Holocene environmental history. The vegetation history of the Soppensee catchment was inferred by pollen and plant-macrofossil analyses on three different cores taken in the deepest part of the lake basin (27 m). On the basis of a high-resolution varve and calibrated radiocarbonchronology it was possible to estimate pollen accumulation rates, which together with the pollen percentage data, formed the basis for the interpretation of the past vegetation dynamics. The basal sediment dates back to the last glacial. After reforestation with juniper and birch at ca. 12 700 B.P., the vegetation changed at around 12 000 B.P. to a pine-birch woodland and at the onset of the Holocene to a mixed deciduous forest. At ca. 7000 B.P., fir expanded and dominated the vegetation with beech becoming predominant at ca. 50014C-years later until sometime during the Iron Age. Large-scale deforestation, especially during the Middle Ages, altered the vegetation cover drastically. During the Late-glacial period two distinct regressive phases in vegetation development are demonstrated, namely, the Aegelsee oscillation (equivalent to the Older Dryas biozone) and the Younger Dryas biozone. No unambiguous evidence for Holocene climatic change was detected at Soppensee. Human presence is indicated by early cereal pollen and distinct pulses of forest clearance as a result of human activity can be observed from the Neolithic period onwards.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号