首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A proxy record of sand beach accretion for the past 10,000 years has been assembled from radiocarbon dates on the Pismo clam, Tivela stultorum, in archaeological sites along the southern California coast. When this record is compared with numerous climate proxies, it appears that El Niño-Southern Oscillation (ENSO) controls on wave climate and sediment flux have acted upon regional geomorphology at different sea levels to either accrete or erode the Holocene beaches of southern California. Tivela dates from the Santa Maria coast indicate that perennial sand beaches built by 9000 years ago in response to abundant riverine sediment contained by the natural groin at Point Sal, wave sheltering by the massive headland of Point Buchon, and Early Holocene El Niño events. On the western Santa Barbara coast, sand beaches were forming by 7000 years ago in response to high sand fluxes from the Santa Ynez Mountains to the many small littoral catchments, possibly aided by high local rates of uplift. Decline of these sand beach habitats 5000-4000 years ago coincides with increased El Niño-driven wave energy. In accord with slowing in sea-level rise ca. 6000 years ago, sand beaches were most widespread in the period 6000-5000 years ago on Estero Bay, the western Santa Barbara coast, and west of Point Dume. However, Tivela dates first appear 5000 years ago in the Oceanside and Silver Strand littoral cells of the San Diego region. This lag coincides with the Middle Holocene shift to a more variable climate and modern periodicity in El Niño events that increased sediment supply to the southern coast. The ontogeny of the littoral cells provides timelines for modeling coastal evolution with implications for sand beach ecology, prehistoric human coastal adaptations, and coastal planning for future climate change.  相似文献   

2.
Bowers  Janice E. 《Plant Ecology》1997,133(1):37-48
Three subpopulations of Ferocactus cylindraceus, a short-columnar cactus of the Sonoran and Mojave deserts, were sampled in Grand Canyon, Arizona, USA, at sites representing a range of substrate ages and different grazing histories. Age-height relations were determined from annual growth, then used to estimate probable year of establishment for each cohort. Eight years between 1944 and 1992 were especially favorable for establishment. Six of these 8 years coincided with El Niño-Southern Oscillation conditions, indicating that as for many woody plants in arid regions, somewhat unusual climatic conditions are necessary if populations are to replace themselves.Comparison of age structures showed that established and developing populations have somewhat different dynamics in that the rate of population increase was slowest on the youngest terrace. On the ancient terraces, about half the plants were less than 25 years old. Plants older than 40 years were few; however the oldest plants in the study (about 49 years) grew on the ancient terraces. On the recent terrace, 76% of the subpopulation was 25 years or younger, and the oldest living plant was about 36 years of age. The age structures of subpopulations on grazed and ungrazed sites also differed markedly. On ungrazed sites, subpopulations were more or less at equilibrium, with enough young plants to replace old ones as they died. In contrast, the subpopulation on the grazed site was in a state of marked disequilibrium. Grazing before 1981 largely extirpated a palatable subshrub that was probably an important nurse plant. Until the shrub population at Indian Canyon recovers from decades of burro grazing, a rebound in F. cylindraceus establishment is not to be expected.Nomenclature: Hickman, J. C. (ed.) 1993. The Jepson manual: Higher plants of California. University of California Press, Berkeley.  相似文献   

3.
In dryland ecosystems, the timing and magnitude of precipitation pulses drive many key ecological processes, notably soil water availability for plants and soil microbiota. Plant available water has frequently been viewed simply as incoming precipitation, yet processes at larger scales drive precipitation pulses, and the subsequent transformation of precipitation pulses to plant available water are complex. We provide an overview of the factors that influence the spatial and temporal availability of water to plants and soil biota using examples from western USA drylands. Large spatial- and temporal-scale drivers of regional precipitation patterns include the position of the jet streams and frontal boundaries, the North American Monsoon, El Niño Southern Oscillation events, and the Pacific Decadal Oscillation. Topography and orography modify the patterns set up by the larger-scale drivers, resulting in regional patterns (102–106 km2) of precipitation magnitude, timing, and variation. Together, the large-scale and regional drivers impose important pulsed patterns on long-term precipitation trends at landscape scales, in which most site precipitation is received as small events (<5 mm) and with most of the intervals between events being short (<10 days). The drivers also influence the translation of precipitation events into available water via linkages between soil water content and components of the water budget, including interception, infiltration and runoff, soil evaporation, plant water use and hydraulic redistribution, and seepage below the rooting zone. Soil water content varies not only vertically with depth but also horizontally beneath versus between plants and/or soil crusts in ways that are ecologically important to different plant and crust types. We highlight the importance of considering larger-scale drivers, and their effects on regional patterns; small, frequent precipitation events; and spatio-temporal heterogeneity in soil water content in translating from climatology to precipitation pulses to the dryland ecohydrology of water availability for plants and soil biota.  相似文献   

4.
Octodontoidea is the most species-rich clade among hystricomorph rodents, and has a fossil record going back to at least the late Oligocene. Affinities of fossils previous to the late Miocene differentiation of the extant families Abrocomidae, Echimyidae and Octodontidae are controversial, essentially because these fossils may share few apomorphies with modern species. In fact, pre-late Miocene representatives of Abrocomidae had not been recognised until very recently. Here we revise the early Miocene genus Acarechimys, originally assigned to Echimyidae, and alternatively to stem Octodontoidea or to Octodontidae. A systematic and parsimony-based phylogenetic analysis of the species traditionally included in Acarechimys showed that this genus is part of stem Abrocomidae. These results are primarily supported by morphology of the mandible and lower molars. Acarechimys is here restricted to three species, A. minutus, A. pulchellus and Acarechimys pascuali sp. nov., while another species, A. constans, is here transferred to a new abrocomid genus. The remaining species were nested within Octodontidae. According to these results, Abrocomidae might have been as diverse as its sister clade Octodontidae-Echimyidae during the late Oligocene–early Miocene. Extinction of this diversity would have resulted in marked loss of evolutionary history, with extant abrocomids being currently restricted to late-diverged euhypsodont representatives.  相似文献   

5.
Temperature changes during ENSO cause mass mortalities of adult Cancer setosus, but the effects on early life stages are unknown. The influence of temperature on survival, development and biochemical composition was studied in larvae of the hairy crab, C. setosus, from a population off the northern Chilean coast. In rearing experiments conducted at four different temperatures (12, 16, 20, 22 °C), zoeal development was only completed at 16 and 20 °C, after 78 and 36 days, respectively. Instar duration was negatively correlated with temperature. A multiple linear model relating larval body mass (in carbon) to temperature and developmental time suggests that successful larval development is possible within a narrow temperature range only. The biochemical composition, measured as carbon, hydrogen, and nitrogen (C, H, N) content, show in general the typical oscillating changes during the moult cycle of brachyuran crab larvae. However, at high (22 °C) and low (16 °C) temperatures, CHN values show deviations from the typical pattern, indicating threshold temperatures for larval activity and survival. These findings indicate that the larval development of C. setosus is compromised under conditions of El Niño, with temperatures exceeding the upper thermal temperature tolerance threshold of larvae. Effects of El Niño on early life history stages and recruitment rates should be increasingly taken into account in fisheries management strategies.  相似文献   

6.
Abstract

Actualistic studies on mammalian carnivore taphonomy in southern South America are reviewed here, including pumas, small cats, foxes, and other, smaller carnivores. Patterns for different carnivore taxa and their variation are elicited. Also temporal and spatial variability is analysed, and comparisons are made to other carnivores and regions. While generally these Neotropical carnivores produce low damage intensity, stronger modifications and their implications are described as well. These patterns and their variation are put in context by taking into account the particular physical and biotic conditions in the southern Neotropics.  相似文献   

7.
Aim Species richness depends on climate and land use. Maintaining locations with favourable climate and land‐use patterns is critical for protecting biodiversity because the loss of either can reduce the species richness that an area supports. Currently, the Guiana Shield (GS) receives abundant precipitation and has relatively light land use. For species richness this constitutes a good–good combination of climate and land use, respectively. In contrast, much of eastern Brazil receives low levels of precipitation and has heavy land use, which is a bad–bad combination for species richness. Thus, the current distribution of precipitation and land use in northern South America is relatively favourable for biodiversity. Palaeoclimate and model studies suggest, however, that the precipitation patterns for the two regions have switched before and could switch in response to greenhouse gas emissions. This paper examines the potential consequences of reconfiguring climate with respect to existing land‐use patterns using South America as an example. Location South America north of 20° S and east of the Andes. Methods Ecosystem structure and function are modelled under (1) historical climate and (2) altered precipitation following a shift in the location of the Inter‐Tropical Convergence Zone (ITCZ). The distribution of precipitation, biomes, net primary productivity (NPP) and land use are then used to predict levels of species richness under the two climate scenarios. Results Climate changes could shift the distribution of vegetation and NPP such that conditions favourable for species richness in the GS region disappear. If land‐use patterns were not prohibitive in eastern Brazil, the improved climate conditions there could compensate for the GS loss (assuming migratory barriers are overcome). Instead, existing land‐use patterns cause the combined species richness projected for the two regions to plummet. Main conclusions Human activities will alter current configurations of land use and climate throughout the world. For species richness, new configurations are likely to include both positive and negative combinations of climate and land use. However, the irreversibility of past extinctions due to land‐use patterns loads the dice against species richness.  相似文献   

8.
The Uruguay River starts in Serra do Mar in Brazil runs through the Paranense forest and flows southward through grassland and savannas. It has a continuous gallery forest of 750 km from the southern border of the Paranense forest to the river mouth. The gallery forest extends for 100 km more along the Río de la Plata. 125 (68.7%) of the 182 species of forest birds recorded in the southern Paranense forest penetrate into the gallery forest of the Uruguay River and only 13 (7.1%) reach the end of the gallery forest (Punta Lara). The number of bird species is inversely correlated (r2 = 0.942) with distance and the slope of the regression is 58.10. This means a decline in diversity with 32% of species lost per unit distance. A hundred and eighty forest tree species were recorded in the southern Paranense forest, of which 113 (62.8%) penetrate into the gallery forest of the Uruguay River, and 28 (15.6%) reach Punta Lara. The number of tree species is inversely correlated (r2 = 0.976) with distance and the slope of the regression is ?45.62. This means a decline in diversity with 25% of species lost per unit distance. The Uruguay River enables the dispersal of many species of forest birds and trees from the rain forest, but species richness tends to decrease with increased distance from the source area. A clear association pattern was found for birds between size, diet, habitat use and distance reached into the gallery forest. Species of smaller body size, granivores, insectivores and those that use both the interior and exterior parts of the gallery forest advanced noticeably further along the river than larger species, carnivores, nectarivores or frugivores, and those that frequent only a part of the forest. Similarly, a clear association between dispersal mechanism, water dependence and distance reached into the gallery forest was found for trees. Species with vegetative reproduction, zoochorous species and riparian species advanced markedly longer distances along the river than, anemochorous species and non‐riparian species.  相似文献   

9.
Abstract Predator assemblages are complex systems in which asynchrony in the dynamics of resources and consumers, and the idiosyncratic perception of environmental conditions by the predators may obscure the detection of expected patterns. We disentangle the specific effects of these variables on the guild structure of a vertebrate predatory assemblage in a semiarid ecosystem of western South America. Over 16 years, this system faced dramatic fluctuations in prey availability associated with four El Niño events. After controlling for other sources of variation, we tested if increased resource availability is associated with higher niche overlaps, as expected from the lean/fat scenario. We determined the existence of two trophic guilds of predators (specialized mammal‐eaters and omnivorous species with emphasis on arthropods) and found that they responded to increased productivity both at the guild and whole assemblage levels. However, the population response of arthropod prey (almost simultaneous) and of different small mammal prey (delayed by 1 or 2 years) to productivity imposed a degree of asynchrony in prey availability and in the response of predators. This resulted in the between‐guilds exchange of predator species depending on mammal prey scarcity or abundance. As a consequence, the observed pattern was an apparent lack of response at the assemblage level. Despite differences in the perception of prey levels by predators, we conclude that each one of them responded accordingly to theoretical predictions following a simple rule: if prey resources are not limiting, predators behave opportunistically converging over the most abundant resources, thus increasing niche overlap; if prey shortages occur, predators specialize on those prey resources that they gather most efficiently, thus lowering niche overlap; if resources become even scarcer, all predators converge again upon the few prey resources still available, thus increasing overlap – out of necessity.  相似文献   

10.
Spore sculpture and wall structure of eight Cyathea (Cyatheaceae) species from southern South America were studied using light microscopy (LM), scanning electron microscopy (SEM) and transmission electron microscopy (TEM) techniques. Two layers, i.e. an inner and an outer layer, were observed in the perispore. The inner layer has two strata: the inner stratum is attached to the exospore and composed of rodlets tangentially oriented to the spore surface and randomly intermixed; the outer stratum consists of a three-dimensional network of rodlets with either free or fused distal edges forming spinules. The outer layer is thin, darkly contrasted and covers the rodlets. In most cases, the exospore has two layers and a pitted surface. In Cyathea atrovirens, the exospore surface is smooth, while in C. delgadii and C. myriotricha it is verrucate. The homogeneity of perispore features within the genus Cyathea is evident, while exospore features are heterogeneous. The exospore has different kinds of surface-structures that are of potential interest for assessing evolutionary trends within the group.  相似文献   

11.
Detecting and predicting how populations respond to environmental variability are eminent challenges in conservation research and management. This is particularly true for wildlife populations at high latitudes, many of which demonstrate changes in population dynamics associated with global warming. The Falkland Islands (Southwest Atlantic) hold one of the largest Gentoo Penguin Pygoscelis papua populations in the world, representing c. 34% of the global population. The numbers of breeding Gentoo Penguins at the Falkland Islands have shown a high degree of inter‐annual variability since monitoring commenced in 1990. However, proximate causes of annual variability in breeding numbers have not been explored. Here we examine 21 years of Gentoo Penguin breeding surveys from the Falkland Islands and assess whether inter‐annual variability in the number of breeding pairs were correlated with proxies of environmental variability. There was a positive correlation between the number of breeding pairs and a broad‐scale climatic variation index, the Southern Oscillation Index (SOI). In turn, the SOI was significantly correlated with spring sea surface temperature anomalies, indicating a more immediate atmospherically forced response to El Niño Southern Oscillation variability in the Southwest Atlantic than previously reported. However, we also describe a non‐linear response to environmental variability that may highlight foraging plasticity and/or the complexity of regional ecosystem interactions that operate across a range of different scales.  相似文献   

12.
13.
We analyzed mtDNA sequence variation in 590 individuals from 18 south Amerindian populations. The spatial pattern of mtDNA diversity in these populations fits well the model proposed on the basis of Y-chromosome data. We found evidence of a differential action of genetic drift and gene flow in western and eastern populations, which has led to genetic divergence in the latter but not in the former. Although it is not possible to identify a pattern of genetic variation common to all South America, when western and eastern populations are analyzed separately, the mtDNA diversity in both regions fits the isolation-by-distance model, suggesting independent evolutionary dynamics. Maximum-likelihood estimates of divergence times between central and south Amerindian populations fall between 13,000 and 19,000 years, which is consistent with a Pleistocenic peopling of South America. Moreover, comparison of among-population variability of mtDNA and Y-chromosome DNA seems to indicate that South America is the only continent where the levels of differentiation are similar for maternal and paternal lineages.  相似文献   

14.
In this study, we evaluate phylogeographic patterns and predictions of ecological niche modelling (ENM) for Eugenia uniflora (Myrtaceae), a widely distributed taxon in the Atlantic forest domain, to understand the effect of past climatic oscillations on the demographic history of this species. An analysis of phylogeographic population structure and demography was conducted on E. uniflora from 46 localities in natural environments across the distribution range of the species based on three plastid markers. ENM was also performed to predict suitable environments and areas of dramatic decrease in future suitability for the species under distinct representative concentration pathways (RCPs). Eugenia uniflora exhibited higher haplotype and nucleotide diversity in the southern part of its distribution than in the northern part. Two divergent lineages were revealed in the phylogenetic analysis of haplotypes, with an estimated divergence at c. 4.9 Mya. The populations in the northern and central regions of the range probably experienced population growth, whereas populations in the southern region are marked by historical demographic stability. ENM results indicate that the distribution of E. uniflora was fragmented in cool periods and was broader and more connected during warm periods during Pleistocene. The results suggest distinct evolutionary histories in southern to northern populations, indicating region‐specific responses to changes.  相似文献   

15.
Veblen  Thomas T.  Kitzberger  Thomas 《Plant Ecology》2002,163(2):187-207
Fire history was compared between the Colorado Front Range (U.S.A.) and northern Patagonia (Argentina) by dating fire-scars on 525 Pinus ponderosa and 418 Austrocedrus chilensis, respectively, and determining fire weather on the basis of instrumental and tree-ring proxy records of climatic variation. Years of above average moisture availability preceding fire years, rather than drought alone, is conducive to years of widespread fire in the Colorado Front Range and the northern Patagonian study areas. Above-average precipitation promotes fire by enhancing the growth of herbaceous plants which increases the quantity of fine fuels during the fire season a few years later. The short-term variability in moisture availability that is conducive to widespread burning is strongly related to El Niño Southern Oscillation (ENSO) activity. The warm (El Niño) phase of ENSO is associated with greater moisture availability during the spring in both regions which leads to peaks in fire occurrence several years after El Niño events. The warmer and drier springs associated with la Niña events exacerbate the drying of fuels so that fire years commonly coincide with La Niña events. In both regions, there was a dramatic decline in fire occurrence after the early 1900s due to a decline in intentionally set fires by Native Americans and European settlers, fuel reduction by livestock grazing, and increasingly effective organized fire suppression activities after the 1920s. In both regions there was a marked increase in fire frequency during the mid-and late-19th centuries which coincides with increased ignitions by Native Americans and/or European settlers. However, year-to-year variability in ring widths of Pinus ponderosa and Austrocedrus chilensis also increased from relatively low values in the late 1700s and early 1800s to peaks in the 1850s and 1860s. This implies frequent alternation of years of above and below average moisture availability during the mid-19th century when the frequencies of major fire years rise. The high correlation of tree-growth variability betweem the two regions implies a strong inter-hemispheric variation in climatic variability at a centennial time scale which closely parallels a variety of proxy records of ENSO activity. Based on the relationship of fire and ENSO events documented in the current study, this long-term trend in ENSO activity probably contributed to the mid- and late-19th century increase in fire spread in both regions. These similar trends in fire occurrence have contributed to similar patterns of forest structures, forest health, and current hazard of catastrophic wildfire in the Colorado Front Range and northern Patagonia.  相似文献   

16.
Substantial recruitment of Callitris glaucophylla in woodland, Sclerolaena birchii in cleared woodland, and Astrebla lappacea in grassland is related to catastrophic events of the past century in the form of interactions between climate, the impact of European land use (sheep, cattle, rabbits) and the rabbit myxoma epizootic. The direct effect of rainfall on the demography of these species and its indirect effect through competition via suites of accompanying plant species are examined. Major long-term changes in plant populations are generated by extreme sequential events rather than by random isolated events. One of the most potent climatic agents for change in eastern Australia is the El Niño/Southern Oscillation phenomenon.  相似文献   

17.
Endemic bird species and conservation in the Cerrado Region, South America   总被引:1,自引:0,他引:1  
A general overview of the largest South American savanna region, the Cerrado Region, is presented. Using simple approaches, I analyse the distribution of the bird species endemic to this region in order to test the hypothesis that areas harbouring local aggregates of restricted-range endemics have remained stable during the successive Quaternary climatic-vegetational changes. This hypothesis seems not to be generally valid for birds of the Cerrado Region, as restricted-range endemic species exist both in areas that remained stable (Central Goia´s Plateau) and areas that remain unstable (Araguaya and Parana~ River valleys, Espinhac¸o Plateau) during the Late Pleistocene. I also discuss some aspects of the conservation in the Cerrado Region, and suggest that the dry forests of the River Parana~ Valley, Goia´s, must be considered the area with the highest priority for the creation of new reserves in the Cerrado Region.  相似文献   

18.
The Glyptodontidae is one of the most conspicuous groups in the Pleistocene megafauna of the Americas. The Glyptodontinae were involved in the Great American Biotic Interchange (GABI) and their earliest records in North America are about 3.9 Ma, suggesting an earlier formation of the Panamanian landbridge. Taxonomically it is possible to recognize two Pleistocene genera of Glyptodontinae:Glyptodon (ca. 1.8 – 0.008 Ma), restricted to South America, andGlyptotherium (ca. 2.6 – 0.009 Ma), including records in both North and Central America. Here we present the first report of the genusGlyptotherium in South America, from the Late Pleistocene of several fossil localities in Falcón State, northwestern Venezuela. A comparative analysis of the material, represented by cranial and postcranial parts, including the dorsal carapace and caudal rings, suggests a close affinity withGlyptotherium cylindricum (Late Pleistocene of Central Mexico). This occurrence in the latest Pleistocene of the northernmost region of South America Supports the bidirectional faunal migration during the GABI and the repeated re-immigration from North America of South American clades, as has been reported in other members of the Cingulata (e.g., Pampatheriidae).   相似文献   

19.
Aim Although sharing many similarities in their vegetation types, South America and Africa harbour very dissimilar recent mammal faunas, not only taxonomically but also in terms of several faunistic patterns. However late Pleistocene and mid‐Holocene faunas, albeit taxonomically distinct, presented many convergent attributes. Here we propose that the effects of the Holocene climatic change on vegetation physiognomy has played a crucial role in shaping the extant mammalian faunistic patterns. Location South America and Africa from the late Pleistocene to the present. Methods Data presented here have been compiled from many distinct sources, including palaeontological and neontological mammalian studies, palaeoclimatology, palynology, and publications on vegetation ecology. Data on Pleistocene, Holocene and extant mammal faunas of South America and Africa allowed us to establish a number of similar and dissimilar faunistic patterns between the two continents across time. We then considered what changes in vegetation physiognomy would have occurred under the late Pleistocene last glacial maximum (LGM) and the Holocene climatic optimum (HCO) climatic regimes. We have ordained these proposed vegetation changes along rough physiognomic seral stages according to assumptions based on current botanical research. Finally, we have associated our hypothesized vegetation changes in South America and Africa with mammalian faunistic patterns, establishing a putative causal relationship between them. Results The extant mammal faunas of South America and Africa differ widely in taxonomical composition; the number of medium and large species they possess; behavioural and ecological characteristics related to herbivore herding, migration and predation; and biogeographical patterns. All such distinctions are mostly related to the open formation faunas, and have been completely established around the mid‐Holocene. Considering that the mid‐Holocene was a time of greater humidity than the late Pleistocene, vegetation cover in South America and Africa would have been dominated by forest or closed vegetation landscapes, at least for most of their lower altitude tropical regions. We attribute the loss of larger‐sized mammal lineages in South America to the decrease of open vegetation area, and their survival in Africa to the existence of vast savannas in formerly steppic or desertic areas in subtropical Africa, north and south of the equator. Alternative explanations, mostly dealing with the disappearance of South American megamammals, are then reviewed and criticized. Main conclusions The reduction of open formation areas during the HCO in South America and Africa explains most of the present distinct faunistic patterns between the two continents. While South America would have lost most of its open formations within the 30° latitudinal belt, Africa would have kept large areas suitable to the open formation mammalian fauna in areas presently occupied by desert and semi‐arid vegetation. Thus, the same general climatic events that affected South America in the late Pleistocene and Holocene also affected Africa, leading to our present day faunistic dissimilarities by maintaining the African mammalian communities almost unchanged while dramatically altering those of South America.  相似文献   

20.
ABSTRACT Molt phenology plays an important role in the annual cycles and energetic budgets of migratory birds. The timing and sequence of molt of Nearctic‐Neotropical migratory passerines is generally known for species that undergo a complete prebasic molt on or near the breeding grounds. However, for the few passerine species such as Bobolinks (Dolichonyx oryzivorus) that undergo a complete prealternate molt, the phenology of this molt on the wintering grounds has received little attention. Most studies evaluate prebasic molt, often carried out in conjunction with a different set of competing energetic demands and under dramatically different conditions (e.g., climate and food availability). The prebasic molt of Bobolinks has been described based on limited museum collections, but the sequence and phenology of the prealternate molt have not been examined. We collected molt data from 242 Bobolinks captured from January to March in Bolivia (2005–2007) and Argentina (2008). We quantified prealternate molt sequence and used a maximum likelihood approach to estimate molt initiation date and duration. We used AIC model selection to evaluate the potential effects of region, year, and sex on prealternate molt phenology. Onset and duration of molt did not differ among years or between males and females. Estimated molt duration was 13 d longer at Bolivia sites than at sites 1200 km further southeast in Argentina, but molt duration in Argentina varied and the difference was not statistically significant. Molt sequence was consistent among populations, and showed only slight deviations from what has been previously reported for Bobolinks. Our results suggest that regional wintering populations of Bobolinks do not mix in a given year, and local factors such as climate and food availability may influence molt phenology.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号