首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Nuclear factor - kappaB (NF-kappaB) is a good therapeutic target for cardiovascular disease and numerous efforts are being made to develop safe NF-kappaB inhibitors. Nowadays many authors address NF-kappaB as a major therapeutic target in atherosclerosis, especially for preventive measures, in the light of two main hypothesis of atherosclerosis: oxidation and inflammation. We hypothesized that ammonium pyrrolidinedithioocarbamate (PDTC) - a well-known inhibitor of NF-kappaB could inhibit the development of atherosclerosis in this experimental model. We used apoE/LDLR - DKO mouse model, which is considered as a one of the best models to study the anti-atherosclerotic effect of drugs. In this model PDTC inhibited atherogenesis, measured both by "en face" method (25,15+/-2,9% vs. 15,63+/-0,6%) and "cross-section" method (565867+/-39764 microm2 vs. 291695+/-30384 microm2). Moreover, PDTC did not change the profile of cholesterol and triglycerides in blood. To our knowledge, this is the first report that shows the effect of PDTC on atherogenesis in gene-targeted apoE/LDLR - double knockout mice.  相似文献   

2.
Atherosclerotic plaque forms in regions of the vasculature exposed to disturbed flow. NF-kappaB activation by fluid flow, leading to expression of target genes such as E-selectin, ICAM-1, and VCAM-1, may regulate early monocyte recruitment and fatty streak formation. Flow-induced NF-kappaB activation is downstream of conformational activation of integrins, resulting in new integrin binding to the subendothelial extracellular matrix and signaling. Therefore, we examined the involvement of the extracellular matrix in this process. Whereas endothelial cells plated on fibronectin or fibrinogen activate NF-kappaB in response to flow, cells on collagen or laminin do not. In vivo, fibronectin and fibrinogen are deposited at atherosclerosis-prone sites before other signs of atherosclerosis. Ligation of integrin alpha2beta1 on collagen prevents flow-induced NF-kappaB activation through a p38-dependent pathway that is activated locally at adhesion sites. Furthermore, altering the extracellular matrix to promote p38 activation in cells on fibronectin suppresses NF-kappaB activation, suggesting a novel therapeutic strategy for treating atherosclerosis.  相似文献   

3.
Yang QW  Mou L  Lv FL  Wang JZ  Wang L  Zhou HJ  Gao D 《Biorheology》2005,42(3):225-236
TLR4 plays an important role in atherosclerosis, but little is known about the precise mechanism. Herein, we investigated the role of TLR4/NF-kappaB signaling pathway in monocyte-endothelial adhesion induced by low shear stress and Ox-LDL. We found that low shear stress up-regulated TLR4 expression in endothelial cells, and that ox-LDL exerted an obvious synergistic action as revealed by RT-PCR and Western blotting analysis. Low shear stress also significantly up-regulated IL-8 expression in endothelial cells. Meanwhile, NF-kappaB activity and the adhesion force of monocytes were increased, and there was a synergetic action of ox-LDL. However, following transfection with a functional mutant of TLR4 (C3H/HeJ, TLR4 Dicd) or addition of anti-human TLR4 mAb, IL-8 expression was obviously decreased, NF-kappaB activity in cells remarkably inhibited, and the adhesion force of monocyte significantly reduced. Nevertheless, anti-human TLR2 mAb had no similar effects. These findings suggest that TLR4 may be involved in the early stages of atherosclerosis, associating ox-LDL, inflammation/infection, and low shear stress. Therefore, TLR4 is expected to be a new target for preventing and treating atherosclerosis.  相似文献   

4.
5.
6.
Oxidized low-density lipoprotein (oxLDL) modifies macrophage inflammatory responses in the pathogenesis of atherosclerosis. In the present study, we focused on gamma-glutamylcysteine synthetase (gamma-GCS), a rate limiting enzyme of glutathione synthesis, and examined whether inflammatory stimulation of gamma-GCS gene in macrophages by lipopolysaccharide (LPS) is modified when the cells were exposed to oxLDL. We found that the nuclear factor-kappaB (NF-kappaB)-mediated induction of gamma-GCS by LPS (100 ng/ml) was suppressed by a 48-h pre-treatment with oxLDL (50 micro/ml), and this was due to a decrease in the DNA-binding activity of NF-kappaB. Furthermore, pre-treatment with oxLDL caused a carbonylation of NF-kappaB subunit p65. With alpha-tocopherol, the oxLDL-induced carbonylation of proteins decreased with a restoration of DNA-binding activity of NF-kappaB. Together, these indicate that oxidative modification of NF-kappaB suppresses LPS-induced expression of gamma-GCS gene in ox-LDL-treated cells, suggesting an implication of oxLDL-induced modulation of NF-kappaB signaling with atherosclerosis.  相似文献   

7.
8.
9.
Ren XY  Ruan QR  Zhu DH  Zhu M  Qu ZL  Lu J 《生理学报》2007,59(3):339-344
本文旨在观察血管紧张素Ⅱ(angiotensinⅡ,AngⅡ)对血管平滑肌细胞核转录因子-κB(nuclear factor-κB,NF-κB)的活性及骨形成蛋白-2(bone morphogenetic protein-2,BMP-2)表达的影响,以探讨AngⅡ参与动脉粥样硬化的机制,并探讨川芎嗪是否能抑制AngⅡ的促动脉粥样硬化作用。采用Western blot、免疫组化和原位杂交等方法分别检测AngⅡ刺激和川芎嗪干预后NF-κB活性、BMP-2蛋白和mRNA表达的变化。结果显示:(1)AngⅡ刺激激活NF-κB。AngⅡ刺激15min即有NF-κB p65核转移,30min达高峰(P〈0.01),1h后减退。川芎嗪抑制AngⅡ诱导的NF-κB激活,与AngⅡ组比较,川芎嗪+AngⅡ组NF-κB活性显著降低(P〈0.01)。(2)AngⅡ刺激6h时BMP-2表达增强(P〈0.05),12h时减弱(P〈0.01),24h时更弱(P〈0.01)。川芎嗪+AngⅡ组中,川芎嗪干预6h时BMP-2表达亦增强,12与24h时保持正常水平。(3)川芎嗪对正常细胞的NF-κB活性和BMP-2表达无影响。以上结果表明,AngⅡ刺激后激活NF-κB并最终使生长抑制因子BMP-2表达下降,这可能是其参与动脉粥样硬化发生的机制之一。BMP-2一过性增高可能不依赖NF-κB通路的激活。川芎嗪可抑制AngⅡ诱导的NF-κB激活与BMP-2表达降低,提示它在抗动脉粥样硬化形成中起重要作用。  相似文献   

10.
IkappaB kinases: key regulators of the NF-kappaB pathway   总被引:15,自引:0,他引:15  
The nuclear factor (NF)-kappaB pathway is important for the expression of a wide variety of genes that are involved in the control of the host immune and inflammatory response, and in the regulation of cellular proliferation and survival. The constitutive activation of this pathway is associated with inflammatory and autoimmune diseases, such as asthma, rheumatoid arthritis and inflammatory bowel disease, in addition to atherosclerosis, Alzheimer's disease, cancer and diabetes. One of the key steps in activating the NF-kappaB pathway is the stimulation of the IkappaB (inhibitor of kappaB) kinases. Recent data indicate that these kinases activate the NF-kappaB pathway through distinct steps that are operative in both the cytoplasm and the nucleus. A better understanding of the mechanisms that activate this pathway provides the potential for defining new therapeutic targets that might prevent the aberrant activation of NF-kappaB in a variety of human diseases.  相似文献   

11.
12.
13.
14.
There is a growing body of evidence to show that that C-reactive protein (CRP), an acute phase reactant, is one of the most valuable predictors of future cardiovascular events. Since CRP proteins directly contribute to the development and progression of atherosclerosis as well, reduction of CRP levels may be a novel therapeutic target for the treatment of cardiovascular disease. In this study, we examined whether pigment epithelium-derived factor (PEDF) could block the interleukin-6-induced CRP expression in cultured human hepatoma cells and the way that it might achieve this effect. PEDF inhibited the IL-6-induced CRP expression in Hep3B cells at both mRNA and proteins levels. PEDF suppressed the intracellular reactive oxygen species generation in IL-6-exposed Hep3B cells. Anti-oxidants mimicked the effects of PEDF. PEDF was also found to inhibit the IL-6-elicited Rac-1 activation, whereas dominant-negative Rac-1 dose-dependently decreased the CRP mRNA levels. PEDF blocked the IL-6-induced STAT3 phosphorylations and NF-kappaB p65 activity in Hep3B cells. Our present study suggests that PEDF could be one of the potent suppressors of CRP production by the liver and may play a protective role against atherosclerosis.  相似文献   

15.
16.
Signaling via NF-kappaB in the nervous system   总被引:4,自引:0,他引:4  
  相似文献   

17.
18.
Pro-apoptotic role of NF-kappaB: implications for cancer therapy   总被引:2,自引:0,他引:2  
Nuclear factor-kappaB (NF-kappaB) is generally viewed as anti-apoptotic and oncogenic, leading to a quest for its inhibitors. However, recent evidence suggests that in some situations NF-kappaB may promote apoptosis. Depending on the specific cell type and the stimulus involved, NF-kappaB activation may lead to either anti- or pro-apoptotic response. Both these effects can be mediated by NF-kappaB in a context-dependent manner by selectively regulating its target genes. In this review, we discuss the evidence for NF-kappaB's pro-apoptotic role and explore the possible mechanisms behind it. We emphasize that rather than trying to inhibit NF-kappaB in cancer therapy, agents should be developed to unleash its pro-apoptotic ability.  相似文献   

19.
An appropriate response to genotoxic stress is essential for maintenance of genome stability and avoiding the passage to neoplasia. Nuclear factor kappaB (NF-kappaB) is activated as part of the DNA damage response and is thought to orchestrate a cell survival pathway, which, together with the activation of cell cycle checkpoints and DNA repair, allows the cell in cases of limited damage to restore a normal life cycle, unharmed. In this respect, NF-kappaB is one of the main factors accounting for chemotherapy resistance and as such impedes effective cancer treatment, representing an important drug target. Despite this high clinical relevance, signalling cascades leading to DNA damage-induced NF-kappaB activation are poorly understood and the use of highly divergent experimental set-ups in the past led to many controversies in the field. Therefore, in this review, we will try to summarize the current knowledge of distinct DNA damage-induced NF-kappaB signalling pathways.  相似文献   

20.
Migration and proliferation of vascular smooth muscle cells (VSMC) contribute to angiogenesis and the lesions of atherosclerosis. Since, vascular endothelial growth factor (VEGF) is overexpressed by VSMC in intima of atherosclerotic human coronary arteries, we determined if VEGF could stimulate VSMC migration and the intracellular signals involved. VEGF induced VSMC migration but had no significant activity on proliferation. VEGF increased intracellular reactive oxygen species (ROS), NF-kappaB activation and IL-6 expression. Blockade of the generation of intracellular ROS by antioxidants inhibited VEGF-induced NF-kappaB activation, IL-6 expression, and cell migration indicating that generation of ROS was required for NF-kappaB activation and the chemotactic activity of VEGF. Expression of a mutated, nondegradable form of inhibitor of NF-kappaB (IkappaB-alphaM) suppressed VEGF-triggered activation of NF-kappaB and upregulation of IL-6 as well as VSMC migration. Neutralization of IL-6 by its antibody significantly attenuated the migration stimulated by VEGF. Collectively, our data provide the first evidence that intracellular ROS and NF-kappaB are required for VEGF-mediated smooth muscle cell migration. Further, IL-6 induced by VEGF is involved in the ability of the growth factor to stimulate migration.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号