首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
What are the earliest signals produced at a wound edge that mobilise epithelial cells to heal the wound? Live analysis of wound healing in the worm Caenorhabditis elegans shows that calcium may be the key early trigger.  相似文献   

2.
3.
Defensins are phylogenetically ancient antibacterial polypeptides found in plants and animals. Isolation of the cDNA and genomic sequences encoding the scorpion (Leiurus quinquestriatus hebraeus) defensin revealed similarity to scorpion neurotoxins in gene organization (two exons and a phase I intron) and intron characteristics (conserved acceptor, donor and putative branch sites). This commonality, alongside a similar core structure, protein sequence and bioactivity suggest that arthropod defensins and scorpion neurotoxins share a common ancestor. Interestingly, phylogenetic analysis of defensins and scorpion neurotoxins illuminates for the first time a putative evolutionary trajectory for scorpion sodium and potassium channel neurotoxins.  相似文献   

4.
Body temperatures during hot flashes were measured in a menopausal woman. Internal temperatures fell after each flash; lowest: rectal, 35.6 degrees C; vaginal, 35.6 degrees C; tympanic, 35.2 degrees C. Where sweating occurred, the skin temperature fell during the flash and rose after it. Finger and toe temperatures always showed a sharp rise at the onset of a flash with a slower fall after the flash. Only the cheeks showed additional temperature rises; maximum, 0.7 degrees C. The heart accelerated 13% at the onset of the flash but slowed immediately thereafter. The flash interval was sharply demarcated by undulations in the ECG baseline. There was never any premonitory sign of the imminence of a flash. A central excitatory state seemed to build up, perhaps by the accumulation of a chemical compound, but not of heat, which was explosively dischargedmthe thermal distress was probably evoked by vascular warming in the cheeks. Dabbing the malar prominences with cold water brought prompt relief.  相似文献   

5.
6.
7.
Transient and low-affinity interactions among macromolecules underlie many physiological events. Often, these interactions are difficult to study because they are not maintained when the participating molecules are removed from their cellular context. To circumvent this challenge, crosslinking reagents can be used to introduce covalent bonds between interacting macromolecules. Photoactivatable crosslinkers are particularly attractive because they allow crosslinking to proceed in time- and location-specific ways. Once the interacting partners have been crosslinked, they can be isolated and then analyzed by mass spectrometry or other analytical techniques to determine the identity of the interacting molecules and to pinpoint the interacting regions. This review highlights recent methodological developments that make it possible to introduce photocrosslinking groups into polypeptides or glycans as they are synthesized in cells. We also describe how these methods offer a non-invasive way to study macromolecular interactions in a native context.  相似文献   

8.
《Cell》2023,186(15):3143-3145
  相似文献   

9.
10.
Delayed fluorescence from Rhodopseudomonas sphaeroides chromatophores was studied with the use of short flashes for excitation. Although the delayed fluorescence probably arises from a back-reaction between the oxidized reaction center bacteriochlorophyll complex (P+) and the reduced electron acceptor (X-), the decay of delayed fluorescence after a flash is much faster (tau1/2 approximately 120 mus) than the decay of P+X-. The rapid decay of delayed fluorescence is not due to the uptake of a proton from the solution, nor to a change in membrane potential. It correlates with small optical absorbance changes at 450 and 770 nm which could reflect a change in the state of X-. The intensity of the delayed fluorescence is 11-18-fold greater if the excitation flashes are spaced 2 s apart than it is if they are 30 s apart. The enhancement of delayed fluorescence at high flash repetition rates occurs only at redox potentials which are low enough (less than +240 mV) so that electron donors are available to reduce P+X- to PX- in part of the reaction center population. The enhancement decays between flashes as PX- is reoxidized to PX, as measured by the recovery of photochemical activity. Evidently, the reduction of P+X- to PX- leads to the storage of free energy that can be used on a subsequent flash to promote delayed fluorescence. The reduction of P+X- also is associated with a carotenoid spectral shift which decays as PX- is reoxidized to PX. Although this suggests that the free energy which supports the delayed fluorescence might be stored as a membrane potential, the ionophore gramicidin D only partially inhibits the enhancement of delayed fluorescence. With widely separated flashes, gramicidin has no effect on delayed fluorescence. At redox potentials low enough to keep X fully reduced, delayed fluorescence of the type described above does not occur, but one can detect weak luminescence which probably is due to phosphorescence of a protoporphyrin.  相似文献   

11.
Delayed fluorescence from Rhodopseudomonas viridis membrane fragments has been studies using a phosphoroscope employing single, short actinic flashes, under conditions of controlled redox potential and temperature. The emission spectrum shows that delayed fluorescence is emitted by the bulk, antenna bacteriochlorophyll. The energy for delayed fluorescence, however, must be stored in a reaction-center complex including the photooxidized form (P+) of the primary electron-donor (P) and the photoreduced form (X MINUS) of the primary electron-acceptor. This is shown by the following observations: (1) Delayed luminescence is quenched (a) at low redox potentials which allow cytochromes to reduce P+ rapidly after the flash, (b) at higher redox potentials which, by oxidizing P chemically, prevent the photochemical formation of P+X minus, and (c) upon transfer of an electron from X minus to a secondary acceptor, Y. (2) Under conditions that prevent the reduction of P+ by cytochromes and the oxidation of X minus by Y, the decay kinetics of delayed fluorescence are identical with those of P+X minus, as measured from optical absorbance changes. The main decay route for P+X minus under these conditions has a rate-constant of approximately 10-3-s-minus 1. In contrase, a comparison of the intensities of delayed and prompt fluorescence indicates that the process in which P+X minus returns energy to the bulk bacteriochlorophyll has a rate-constant of 3.7 s-minus 1, at 295 degrees K and pH 7.8. The decay kinetics of P+X minus and delayed fluorescence change little with temperature, whereas the intensity of delayed fluorescence increases with increasing temperature, having an activation energy of 12.5 kcal mol-mol- minus 1. We conclude that the main decay route involves tunneling of an electron from X minus to P+, without the promotion of P to an excited state. Delayed fluorescence requires such a promotion, followed by transfer of energy to the bulk bacteriochlorophyll, and this combination of events is rare. The activation energy, taken with potentiometric data, indicates that the photochemical conversion of PX to P+X minus results in increases of both the energy and the entropy of the system, by 16.6 kcal-mol- minus 1 and 8.8 cal-mol- minus 1-deg- minus 1. The intensity of delayed fluorescence depends strongly on the pH; the origin of this effect remains unclear.  相似文献   

12.
13.
14.
Compensatory base changes (CBCs) in the ribosomal RNA (rRNA) internal transcribed spacer 2 (ITS2) secondary structures have been used to successfully verify the taxonomy of closely related species. CBCs have never been used to distinguish morphologically indistinct species. Under the hypothesis that CBCs will differentiate species in higher eukaryotes, novel software for CBC analysis was applied to morphologically indistinguishable insect species in the genus Altica. The analysis was species-specific for sympatric Altica beetles collected across four ecoregions and concordant with scanning electron microscopy data. This research shows that mining for CBCs in ITS2 rRNA secondary structures is an effective method for eukaryotic taxon analysis.  相似文献   

15.
16.

Background  

The evolutionary distance between human and macaque is particularly attractive for investigating local variation in neutral substitution rates, because substitutions can be inferred more reliably than in comparisons with rodents and are less influenced by the effects of current and ancient diversity than in comparisons with closer primates. Here we investigate the human-macaque neutral substitution rate as a function of a number of genomic parameters.  相似文献   

17.
18.
Superoxide flashes in single mitochondria   总被引:1,自引:0,他引:1  
Wang W  Fang H  Groom L  Cheng A  Zhang W  Liu J  Wang X  Li K  Han P  Zheng M  Yin J  Wang W  Mattson MP  Kao JP  Lakatta EG  Sheu SS  Ouyang K  Chen J  Dirksen RT  Cheng H 《Cell》2008,134(2):279-290
In quiescent cells, mitochondria are the primary source of reactive oxygen species (ROS), which are generated by leakiness of the electron transport chain (ETC). High levels of ROS can trigger cell death, whereas lower levels drive diverse and important cellular functions. We show here by employing a newly developed mitochondrial matrix-targeted superoxide indicator, that individual mitochondria undergo spontaneous bursts of superoxide generation, termed "superoxide flashes." Superoxide flashes occur randomly in space and time, exhibit all-or-none properties, and provide a vital source of superoxide production across many different cell types. Individual flashes are triggered by transient openings of the mitochondrial permeability transition pore stimulating superoxide production by the ETC. Furthermore, we observe a flurry of superoxide flash activity during reoxygenation of cardiomyocytes after hypoxia, which is inhibited by the cardioprotective compound adenosine. We propose that superoxide flashes could serve as a valuable biomarker for a wide variety of oxidative stress-related diseases.  相似文献   

19.
Intracellular pathogens subvert the host cell cytoskeleton to promote their own survival, replication, and dissemination. Study of these microbes has led to many discoveries about host cell biology, including the identification of cytoskeletal proteins, regulatory pathways, and mechanisms of cytoskeletal function. Actin is a common target of bacterial pathogens, but recent work also highlights the use of microtubules, cytoskeletal motors, intermediate filaments, and septins. The study of pathogen interactions with the cytoskeleton has illuminated key cellular processes such as phagocytosis, macropinocytosis, membrane trafficking, motility, autophagy, and signal transduction.  相似文献   

20.
Glycosylation is a ubiquitous post-translational modification read by glycan-binding proteins (GBP) to encode important functions, but a robust understanding of these interactions and their consequences can be challenging to uncover. Glycan-GBP interactions are transient and weak, making them difficult to capture, and glycosylation is dynamic and heterogenous, necessitating study in native cellular environments to identify endogenous ligands. Proximity labeling, an experimental innovation that labels biomolecules close to a protein of interest, has recently emerged as a powerful strategy to overcome these limitations, allowing interactors to be tagged in cells for subsequent enrichment and identification by mass spectrometry-based proteomics. We will describe this nascent technique and discuss its applications in the last five years with different GBP classes, including Siglecs, galectins, and non-human lectins.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号