首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Adventitious root formation in stem cuttings of mung bean was enhanced by ethrel, which had an additive effect when employed simultaneously with indolebutyric acid (IBA). Abscisic acid (ABA) did not influence the number of roots per cutting whereas gibberellic acid (GA3) and kinetin were without effect on rooting at lower concentrations but were inhibitory at higher concentrations. Nevertheless, all three of these chemicals showed synergistic interactions with IBA and/or indol-3-ylacetic acid (IAA) and thereby significantly promoted root formation. A localised application of morphactin to the epicotyl of cuttings totally inhibited root production irrespective of which of the foregoing growth regulators were suppliedvia the hypocotyl. Morphactin application also prevented root formation in cuttings treated with vitamin D2. The various growth regulators employed had differing effects on growth of roots but there was no simple relationship between their effects on root formation and subsequent root growth.  相似文献   

2.
3.
4.
Plant root growth, architecture and function   总被引:16,自引:0,他引:16  
Without roots there would be no rhizosphere and no rhizodeposition to fuel microbial activity. Although micro-organisms may view roots merely as a source of carbon supply this belies the fascinating complexity and diversity of root systems that occurs despite their common function. Here, we examine the physiological and genetic determinants of root growth and the complex, yet varied and flexible, root architecture that results. The main functions of root systems are also explored including how roots cope with nutrient acquisition from the heterogeneous soil environment and their ability to form mutualistic associations with key soil micro-organisms (such as nitrogen fixing bacteria and mycorrhizal fungi) to aid them in their quest for nutrients. Finally, some key biotic and abiotic constraints on root development and function in the soil environment are examined and some of the adaptations roots have evolved to counter such stresses discussed.  相似文献   

5.
6.
Root biomass distribution on an age series of naturally revegetated coalmine spoils in a dry tropical environment is described. 65 to 85% of the total root biomass was observed in the upper 0–15 cm of spoil depth. Highest (724 g m-2) and lowest (186 g m-2) values of root biomass were found on 12-yr old protected flat surfaces and 5-yr old grazed undulating sites, respectively. There is an increase in root biomass with increase in age of coalmine spoil.  相似文献   

7.
The incorporation of a fusion of green fluorescent protein and tubulin-alpha 6 from Arabidopsis thaliana in root hairs of Lotus japonicus has allowed us to visualize and quantify the dynamic parameters of the cortical microtubules in living root hairs. Analysis of individual microtubule turnover in real time showed that only plus polymer ends contributed to overall microtubule dynamicity, exhibiting dynamic instability as the main type of microtubule behavior in Lotus root hairs. Comparison of the four standard parameters of in vivo dynamic instability--the growth rate, the disassembly rate, and the frequency of transitions from disassembly to growth (rescue) and from growth to disassembly (catastrophe)--revealed that microtubules in young root hairs were more dynamic than those in mature root hairs. Either inoculation with Mesorhizobium loti or purified M. loti lipochitin oligosaccharide signal molecules (Nod factors) significantly affected the growth rate and transition frequencies in emerging and growing root hairs, making microtubules less dynamic at a specific window after symbiotic inoculation. This response of root hair cells to rhizobial Nod factors is discussed in terms of the possible biological significance of microtubule dynamics in the early signaling events leading to the establishment and progression of the globally important Rhizobium/legume symbiosis.  相似文献   

8.
Plant growth-promoting bacteria (PGPB) and NO-3 availability both affect NO-3 uptake and root architecture. The presence of external NO-3 induces the expression of NO-3 transporter genes and elicits lateral root elongation in the part of the root system exposed to the NO-3 supply. By contrast, an increase in NO-3 supply leads to a higher plant N status (low N demand), which represses both the NO-3 transporters and lateral root development. The effects of PGPB on NO-3 uptake and root development are similar to those of low NO-3 availability (concomitant stimulation of NO-3 uptake rate and lateral root development). The mechanisms responsible for the localized and long-distance regulation of NO-3 uptake and root development by NO-3 availability are beginning to be elucidated. By contrast, the signalling and transduction pathways elicited by the rhizobacteria remain totally unknown. This review will compare the effects of NO-3 availability and PGPB on root morphogenesis and NO-3 uptake, in order to determine whether interactions exist between the NO-3-dependent and the PGPB-dependent regulatory pathways.  相似文献   

9.

Background and aims

The radial growth of roots largely affects and reorganizes the porous or crack networks of soils and substrates. We studied the consequences of a radial steric constriction on the root growth and the feedback force developed by the root on the solid phase.

Methods

We developed an original method of photoelasticity to measure in situ root forces. By changing the gap width (0.5 to 2.3?mm) between two photoelastic disks we applied variable radial constrictions to root growth and simultaneously measured the corresponding radial forces. Changes in morphology and forces of primary roots of chick pea (Cicer arietinum L.) seedlings were recorded by time-lapse imaging every 24?min up to 5?days.

Results

The probability of root entering the gap depended on the gap size but was also affected by circumnutation. Compared to non-constrained root controls, no significant morphological change (elongation, diameter) was measured outside the gap zone. Inside the gap zone, outer cortex cells were compressed, the central cylinder was unaffected. Radial forces were increasing with time but no force levelling was observed even after 5?days.

Conclusions

Radial constrictions applied to roots did not significantly reduce their growth. The radial force was related to the root strain in the gap.  相似文献   

10.
11.
12.
Plant root exudates   总被引:3,自引:0,他引:3  
  相似文献   

13.
14.
In this paper, we consider the use of compartmental modelling to examine the integration of root and shoot resource allocation without the use of partitioning functions or communicating messengers. Emphasing overall growth and the partitioning of biomass and resources between shoots and roots, we discuss the use of modelling to explore mechanisms of control, to direct experimentation and to test physiological hypotheses concerning their regulation. We discuss how the interrelationships of allocation processes and growth might be considered by generating mutants of a basic model, and we suggest this approach as one general way to increase interactions between modellers and experimentalists.Recognizing that the meristematic origin of plant organs inherently limits the usefulness of two compartment (root and shoot) models, we consider three problems to be solved (both computationally and experimentally) in extending modelling to more complex simulations: the incorporation of direct root/shoot signaling for regulation of the shoot-shoot ratio (S/R), the modelling of growth of individual leaves, and the definition of shoots based on component leaves and internodes. Finally, we briefly consider the problem of nitrogen and the regulation of S/R as an example of experimentation directed by modelling.  相似文献   

15.
16.
Morillon R  Lassalles JP 《Planta》2002,214(3):392-399
The effect of low water potentials on root growth of flax (Linum usitatissimum L. cv. Ariane), rape (Brassica napus L. de Candolle, cv. Bristol), hard wheat (Triticum turgidum L. cv. Cham1) and soft wheat (Triticum aestivum L. cv. Ritmo) was studied by measuring the osmotic water permeability (Pos) of root protoplasts and the protein abundance of PIP1 and PIP2 aquaporins. These different species require more or less water, the most sensitive to water deficit being flax and rape. Ritmo, is a cultivar of wheat adapted to temperate zones, while the other cultivar Cham1 is adapted to low-rainfall areas. The seedlings were germinated and grown in water, salt or sugar solutions at different water potentials. The values of Pos for flax, rape and Chaml wheat were normally distributed and could be characterized by mean +/- SD. Root protoplasts from water-grown seedlings had Pos values of 485+/-159 microm s(-1) (flax), 582+/-100 microm s(-1) (rape), and 6.3+/-3.5 microm s(-1) (Cham1). At the same age, the protoplasts from Ritmo exhibited a much wider range of values than the protoplasts of Cham1. When seedlings were grown under conditions of osmotic or salt stress, the mass of the roots was reduced for all species. With 0.25 mol kg(-1) sorbitol or 0.125 M NaCl, the Pos for flax, rape and Cham1 remained constant or slightly increased, while for Ritmo the reduction in the mass of the roots was paralleled by a reduction in Pos. Only Cham1 and Ritmo were able to germinate at a lower potential (0.5 mol kg(-1) sorbitol). For Ritmo the reduction in the mass of the roots was paralleled by a reduction in Pos when grown in this stress condition and both wheats exhibited low Pos values. The expression of the PIP1 and PIP2 aquaporins families was also studied by immunoblotting. We did not observe any difference in protein expression for any of the species, whatever the growing conditions. We suggest that the high Pos values for flax and rape could play a role in the sensitivity of these plants at low water potential. The low native Pos for Cham1 in spite of the expression of both families of aquaporins may reflect its adaptation to low-rainfall conditions by a functional regulation of the water channels. For a similar reason, the low-water-potential-induced Pos of Ritmo may also correspond to a down-regulation of the aquaporins, reflecting adaptation of this wheat to water-deficit conditions.  相似文献   

17.
液体地膜覆盖对棉花根系生长发育的影响   总被引:6,自引:0,他引:6  
基于棉田可持续发展的思想,利用茚三酮法、钼蓝法及土壤双向切片法,研究了液体地膜覆盖对棉花根系生长发育的影响。结果表明,覆盖棉花前期根系生长发育加快,表现为根系活力增强,根系干重较大,但覆盖不利于棉花根系下扎,土壤深层根系衰减较快。与塑料地膜覆盖相比,液体地膜覆盖增强根系吸收与合成能力的效应在棉花各生育阶段均较明显,根系在土壤内分布较为合理,土壤深层根系衰减较慢,更有利于棉株均衡生长发育,防止棉花早衰。在棉花生产上,采用液体地膜覆盖栽培是一项可行技术.  相似文献   

18.
Effects on leaf growth, biomass accumulation and root morphogenesis associated with the establishment of phosphorus (P) deficiency were studied on maize in order to test the hypothesis that the root system response can be accounted for by the effect of P deficiency on the carbon budget of the plant. P deprivation had a large and rapid negative effect on leaf expansion. For 7 d after P deprivation, the total dry matter production per plant was almost fully accounted for by the effect of P starvation on leaf growth and its subsequent effect on photosynthetically active radiation (PAR) interception. No strong effect of P deficiency was observed on the radiation use efficiency during this first period, although it was reduced thereafter. Root growth was slightly enhanced a few days after P starvation, but strongly reduced thereafter. The elongation rate of axile roots was maintained throughout the experiment, whereas emergence of new axile roots and elongation of first-order laterals were drastically reduced. The density of first-order laterals was not severely affected. These morphological responses are very similar to what is observed when root growth is limited by the availability in carbohydrates. The results are therefore compatible with the hypothesis that P deficiency mainly affects the root system morphology through its effect on the carbon budget of the plant with no additional specific effect of P deficiency on root morphogenesis. The drastic and early reduction of shoot growth after P deprivation may explain that more carbohydrates were available for root growth which was observed a few days after P starvation and reported by several authors. Later on, however, because of the reduced leaf area of P-deprived plants, their capacity to intercept light was severely reduced so that root growth was finally reduced.Keywords: Zea mays L., maize, phosphorus, root, root morphogenesis.   相似文献   

19.
Allen A  Snyder AK  Preuss M  Nielsen EE  Shah DM  Smith TJ 《Planta》2008,227(2):331-339
Plant defensins are small, highly stable, cysteine-rich antimicrobial proteins that are thought to constitute an important component of plant defense against fungal pathogens. There are a number of such defensins expressed in various plant tissues with differing antifungal activity and spectrum. Relatively little is known about the modes of action and biological roles of these proteins. Our previous work on a virally encoded fungal toxin, KP4, from Ustilago maydis and subsequently with the plant defensin, MsDef1, from Medicago sativa demonstrated that some of these proteins specifically blocked calcium channels in both fungi and animals. The results presented here demonstrate that KP4 and three plant defensins, MsDef1, MtDef2, and RsAFP2, all inhibit root growth in germinating Arabidopsis seeds at low micromolar concentrations. We have previously demonstrated that a fusion protein composed of Rab GTPase (RabA4b) and enhanced yellow fluorescent protein (EYFP) is dependent upon calcium gradients for localization to the tips of the growing root hairs in Arabidopsis thaliana. Using this tip-localized fusion protein, we demonstrate that all four proteins rapidly depolarize the growing root hair and block growth in a reversible manner. This inhibitory activity on root and root hair is not directly correlated with the antifungal activity of these proteins and suggests that plants apparently express targets for these antifungal proteins. The data presented here suggest that plant defensins may have roles in regulating plant growth and development. A. Allen and A.K. Snyder contributed equally.  相似文献   

20.
Schuurman  J. J. 《Plant and Soil》1965,22(3):352-374
Summary Combinations of three grades of density of topsoil and of subsoil in artificial profiles have been used to study the influence of soil density on growth of the roots of oats. The soil was humous sand.The development of roots proved better the less compact the soil is. In the very dense soil rootgrowth was markedly reduced. It is likely that mechanical resistance is the only reason for the restriction of the growth hereby.Whereas a moderate growth of roots was possible even in the most densely packed soil, such a dense subsoil could absolutely not been penetrated by roots coming from a loose topsoil. This is presumably not due to a lack of support in the loose soil, but to an insufficient osmotic pressure in the roots.The hampered rootgrowth in compacted soil limited the uptake of water and nutrients and hereby reduced the development of the tops of plants.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号