首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We purified acidic ribosomal proteins (P1 and P2) in good yield from rat liver ribosomes by precipitation of ribosomes with MgCl2 prior to ethanol extraction and chromatography of the extract on a column of CM-cellulose at pH 4.8. The newly-synthesized acidic ribosomal proteins in regenerating rat liver, labeled in vivo with [3H]leucine, were rapidly incorporated into cytoplasmic ribosomes without any detectable time lag and, after reaching a maximum at 30 min, they gradually disappeared from the ribosomes, suggesting a short metabolic-life. However, it was found later that they were re-incorporated slowly when newly-labeled proteins were "chased" by an injection of a large amount of cold leucine intraperitoneally at 15 min after the injection of [3H]leucine. Furthermore, in a long-term experiment, acidic ribosomal proteins were found to disappear with a half-life of 100 h from the ribosomes. Thus, these results suggest that acidic ribosomal proteins have a long metabolic life and are exchangeable on cytoplasmic ribosomes in regenerating rat liver.  相似文献   

2.
Abiotic stress in plants causes accumulation of reactive oxygen species (ROS) leading to the need for new protein synthesis to defend against ROS and to replace existing proteins that are damaged by oxidation. Functional plant ribosomes are critical for these activities, however we know little about the impact of oxidative stress on plant ribosome abundance, turnover, and function. Using Arabidopsis cell culture as a model system, we induced oxidative stress using 1 µm of H2O2 or 5 µm menadione to more than halve cell growth rate and limit total protein content. We show that ribosome content on a total cell protein basis decreased in oxidatively stressed cells. However, overall protein synthesis rates on a ribosome abundance basis showed the resident ribosomes retained their function in oxidatively stressed cells. 15N progressive labelling was used to calculate the rate of ribosome synthesis and degradation to track the fate of 62 r‐proteins. The degradation rates and the synthesis rates of most r‐proteins slowed following oxidative stress leading to an ageing population of ribosomes in stressed cells. However, there were exceptions to this trend; r‐protein RPS14C doubled its degradation rate in both oxidative treatments. Overall, we show that ribosome abundance decreases and their age increases with oxidative stress in line with loss of cell growth rate and total cellular protein amount, but ribosome function of the ageing ribosomes appeared to be maintained concomittently with differences in the turnover rate and abundance of specific ribosomal proteins. Data are available via ProteomeXchange with identifier PXD012840.  相似文献   

3.
The functional distinction of membrane-bound and free polyribosomes for the synthesis of exportable and non-exportable proteins respectively is not so strict as was initially thought, and it was therefore decided to investigate their relative contribution to the elaboration of an internal protein integrated into a cell structure. Cytochrome c was chosen as an example of a soluble mitochondrial protein, and the incorporation of [(14)C]leucine and delta-amino[(14)C]laevulinate into the molecule was studied by using different ribosomal preparations from regenerating rat liver. A new procedure was devised for the purification of cytochrome c, based on ion-exchange chromatography combined with sodium dodecyl sulphate-polyacrylamide-gel electrophoresis. In spite of cytochrome c being a non-exportable protein, the membrane-bound polyribosomes were at least as active as the free ribosomes in the synthesis in vitro of the apoprotein and the haem moiety. The detergent-treated ribosomes could also effect the synthesis of cytochrome c, although at a lower rate. Since in liver more than two-thirds of the ribosomes are bound to the endoplasmic-reticulum membranes, it is considered that in vivo they are responsible for the synthesis of most of the cytochrome c content of the cell. This suggests that in secretory tissues the endoplasmic reticulum plays a predominant role in mitochondrial biogenesis, although free ribosomes may participate in the partial turnover of some parts of the organelle. The hypothesis on the functional specialization of the different kinds of ribosomes was therefore modified to account for their parallel intervention in the synthesis of proteins associated with membranous structures.  相似文献   

4.
The synthesis and turnover of diamine oxidase (EC 1.4.3.6) activity was studied in regenerating rat liver after partial hepatectomy using inhibitors of protein and RNA syntheses. The administration to animals of cycloheximide or actinomycin D prevented the increase in diamine oxidase activity normally observed during the first hours after hepatectomy. The study of the turnover rate of diamine oxidase with cycloheximide demonstrated that the half-life of this enzyme was about 15 h in normal and regenerating liver. These results suggest that the rise in diamine oxidase activity in regenerating rat liver was due to the synthesis of new enzyme rather than to a lengthening of its turnover.  相似文献   

5.
6.
Control of protein homeostasis is fundamental to the health and longevity of all organisms. Because the rate of protein synthesis by ribosomes is a central control point in this process, regulation, and maintenance of ribosome function could have amplified importance in the overall regulatory circuit. Indeed, ribosomal defects are commonly associated with loss of protein homeostasis, aging, and disease (1, 2, 3, 4), whereas improved protein homeostasis, implying optimal ribosomal function, is associated with disease resistance and increased lifespan (5, 6, 7). To maintain a high-quality ribosome population within the cell, dysfunctional ribosomes are targeted for autophagic degradation. It is not known if complete degradation is the only mechanism for eukaryotic ribosome maintenance or if they might also be repaired by replacement of defective components. We used stable-isotope feeding and protein mass spectrometry to measure the kinetics of turnover of ribosomal RNA (rRNA) and 71 ribosomal proteins (r-proteins) in mice. The results indicate that exchange of individual proteins and whole ribosome degradation both contribute to ribosome maintenance in vivo. In general, peripheral r-proteins and those with more direct roles in peptide-bond formation are replaced multiple times during the lifespan of the assembled structure, presumably by exchange with a free cytoplasmic pool, whereas the majority of r-proteins are stably incorporated for the lifetime of the ribosome. Dietary signals impact the rates of both new ribosome assembly and component exchange. Signal-specific modulation of ribosomal repair and degradation could provide a mechanistic link in the frequently observed associations among diminished rates of protein synthesis, increased autophagy, and greater longevity (5, 6, 8, 9).  相似文献   

7.
Embryos at various stages of early development from 1.5 to 5 hr after oviposition were made permeable with octane and labeled for 1 hr with [3H]phenylalanine. Measurements of the rate of incorporation of [3H]phenylalanine into ribosomal proteins and total protein were made using these synchronized Drosophila embryos. The rate of synthesis of those ribosomal proteins incorporated into ribosomes increases until 3 to 4 hr after fertilization (550 pg/embryo-hr) then declines later in embryonic development. The rate of total protein synthesis is maximal as early during embryonic development as could be measured. During the period between 1.5 and 2.5 hr after fertilization this rate is 9.4 ng/embryo-hr and then also declines. The synthesis of ribosomal proteins accounts for a substantial portion (4.5%–8.9%) of total protein synthesis in early embryos. These results indicate that ribosome formation is a significant activity during the earliest stages of Drosophila development.  相似文献   

8.
9.
A number of novel observations on ribosomal metabolism were made during gametic differentiation of Chlamydomonas reinhardi. Throughout the gametogenic process the amount of chloroplast and cytoplasmic ribosomes decreased steadily. The kinetics and extent of such decreases were different for each of the two ribosomal species. Comparable rRNA degradation accompanied this ribosome degradation. Concurrent with the substantial ribosome degradation was the synthesis of rRNA, ribosomal proteins and the assembly of new chloroplast and cytoplasmic ribosomes throughout gametogenesis. The newly synthesized chloroplast ribosomes exhibited distinctively faster turnover than their cytoplasmic counterpart. Cytoplasmic ribosomes, pulse-labeled in early gametogenic stages, retained label until differentiation was nearly complete even though a net decrease in the level of cytoplasmic ribosomes continued, indicating that the newly synthesized cytoplasmic ribosomes were preferentially retained during differentiation. Hence the regulation of ribosome metabolism during gametogenesis contrasts with the conservation of ribosomes obtained during vegetative growth of C. reinhardi and other organisms. This unique pattern of ribosome metabolism suggests that new ribosome synthesis is necessary during gametogenesis and that some specific structural or functional difference relating to the development stage of the life cycle might exist between degraded and newly synthesized ribosomes.  相似文献   

10.
Changes in the growth and protein turnover (measured in vivo) of the rat liver, kidney and whole body were studied between 16 days of life in utero and 105 weeks post partum. Tissue and whole-body growth were related to changes in both cellular hyperplasia (i.e. changes in DNA) and hypertrophy (protein/DNA values) and to the protein composition within the enlarging tissue mass. The suitability of using a single large dose of phenylalanine for measuring the rates of protein synthesis during both pre- and post-natal life was established. The declining growth rates in the whole animal and the two visceral tissues were then explained by developmental changes in the fractional rates of protein synthesis and breakdown, turnover rates being age-for-age higher in the liver than in the kidney, which in turn were higher than those measured in the whole animal. The declining fractional rates of synthesis in both tissues and the whole body with increasing age were related to changes in the tissues' ribosomal capacity and activity. The fall in the hepatic rate between 18 and 20 days of foetal life (from 134 to 98% per day) corresponded to a decrease in both the ribosomal capacity and the rate of synthesis per ribosome. No significant changes in any of these parameters were, however, found in the liver between weaning (3 weeks) and senility (105 weeks). In contrast, the fractional synthetic (and degradative) rates progressively declined in the kidney (from 95 to 24% per day) and whole body (from 70 to 11% per day) throughout both pre- and post-natal life, mainly as a consequence of a progressive decline in the ribosomal capacity, but with some fall in the ribosomal activity also during foetal life. The age-related contributions of these visceral tissues to the total amount of protein synthesized per day by the whole animal were determined. The renal contribution remained fairly constant at 1.6-2.9%, whereas the hepatic contribution declined from 56 to 11%, with increasing age. Approximate-steady-state conditions were reached at, and between, 44 and 105 weeks post partum, the half-life values of mixed whole-body, kidney and liver proteins being 6.4, 3.0 and 1.5 days, respectively, at 105 weeks.  相似文献   

11.
The administration of a low dose of actinomycin D to partially hepatectomized rats, which selectively inhibited rRNA synthesis, caused the preferential degradation of newly synthesized ribosomal proteins in regenerating rat liver with an apparent half-life of about 20 to 40 min.  相似文献   

12.
Regulation of Ribosomal Protein Synthesis in Escherichia coli   总被引:11,自引:6,他引:5       下载免费PDF全文
  相似文献   

13.
An important component of the decrease in protein synthesis in muscle of diabetic animals is a fall in the ribosome content. Therefore, we have investigated the turnover of ribosomes in skeletal muscle, heart, and liver of rats during the onset of diabetes. Synthesis rates were measured by incorporation of label into the protein moieties of the ribosomes, and a dual isotope technique was used to relate ribosome synthesis to that of total tissue protein. Degradation rates were calculated as the difference between the rates of synthesis and accumulation. The loss of ribosomes from gastrocnemius muscle and heart took place mainly between the 2nd and 4th days of insulin deficiency and was brought about largely by a very pronounced increase in the degradation rate, though synthesis also fell by a substantial amount. Rates of total tissue protein synthesis decreased markedly, but the degradation rates were only slightly elevated, if at all. Thus, the effect of diabetes on muscle ribosome breakdown was quite distinct from that on degradation of total tissue protein. In liver the response of protein synthesis to diabetes was much less pronounced than in muscle, and ribosome synthesis was not affected.  相似文献   

14.
To examine whether serine proteases of rat liver chromatin are also involved in the degradation of newly synthesized and unbound ribosomal proteins and histones, like the nuclear thiol protease which we reported previously (Tsurugi, K. & Ogata, K. (1979) Eur. J. Biochem. 101, 205-213), in vivo experiments were carried out with serine protease inhibitor, PMSF. The following results were obtained. When normal rats received an intraperitoneal injection of PMSF (10 mg per 100 g body weight), nuclear serine proteases were inhibited almost completely for at least 90 min. PMSF did not affect the synthesis of proteins and RNAs of ribosomes and other subcellular fractions. The effects of PMSF treatment in vivo on the degradation of newly synthesized ribosomal proteins and histones in regenerating rat liver pretreated with a low dose of actinomycin D, which preferentially inhibited rRNA synthesis, were examined by using the double-isotope method. It was found that PMSF treatment did not affect their degradation. On the other hand, administration of E-64, a thiol protease inhibitor, to partially hepatectomized rats inhibited the degradation of those proteins markedly. From these results, it is concluded that the nuclear thiol protease, but not serine proteases, is preferentially involved in the degradation of newly synthesized ribosomal proteins and histones which are not associated with rRNA and DNA, respectively.  相似文献   

15.
16.
A comparison of the proteins of chicken and rat liver ribosomes using immunochemical techniques was undertaken. The procedures included quantitative precipitation, passive hemagglutination, and immunodiffusion on Ouchterlony plates. The results indicate that antisera specific for chicken or rat liver ribosomes recognize only about 20% of common determinants. While there are important reservations, the results suggest extensive differences in the proteins of rat and chicken liver ribosomes. Despite those differences, rat and chicken liver ribosomal proteins maintain some homologous sequences present in bacterial ribosomal proteins. An enriched antibody preparation against chicken 80 S ribosomes inhibited the poly(U)-directed synthesis of polyphenylalanine and the elongation factor G (EF-G)-catalyzed binding of [3H]GDP to Escherichia coli ribosomes. Thus, chicken liver ribosomes, like ribosomes from rat liver and yeast, must have proteins homologous with those of E. coli ribosomes.  相似文献   

17.
18.
The average decay rates (half-lives) of mixed glycoproteins were measured using double isotopes of fucose and glucosamine and compared to those of mixed overall proteins measured with leucine and NaH14CO3 in whole homogenates and plasma membranes from normal and regenerating rat livers. A large reutilization of leucine was observed under both normal and regenerating conditions. Fucose seems to be recycling most predominantly in regenerating liver, whereas glucosamine was found to be very little if not at all reutilized under both conditions. Comparison of the results obtained with NaH14CO3 and glucosamine demonstrated that glycoproteins from normal liver homogenate are degraded at a faster rate than mixed proteins. Contrary to that of mixed proteins, the half-life of glycoproteins remains unchanged during liver regeneration, and the use of glucosamine revealed that the degradation of plasma membrane glycoproteins is identical to that found in whole homogenate under both normal and regenerating conditions. Finally, the relative degradation rates of fractionated plasma membrane proteins and glycoproteins were evaluated under the same conditions. During liver regeneration some readjustments are observed in the relative degradation rates of individual species which suggest that the synthesis and degradation of the various surface membrane glycoproteins proceed at rates that are controlled independently.  相似文献   

19.
Metabolism of 5S RNA in the absence of ribosome production   总被引:3,自引:0,他引:3  
L Miller 《Cell》1974,3(3):275-281
The results presented in this report show that during early development of Xenopus laevis the synthesis of 5S RNA occurs in blastula embryos, whereas the synthesis of 18S and 28S RNA cannot be detected until gastrulation. Thus the initiation of synthesis of the three ribosomal RNAs is not coordinate during early development. Blastula embryos are similar to anucleolate mutants of Xenopus laevis, in that they both synthesize 5S RNA, but are unable to assemble new ribosomes because they do not synthesize 18S and 28S RNA or ribosomal proteins. The blastula and anucleolate embryos thus provide a unique opportunity to determine if newly synthesized soluble 5S RNA can exchange with the 5S RNA present in existing ribosomes. The results show that newly synthesized 5S RNA is not incorporated into the ribosomes of blastula or anucleolate embryos. Furthermore, the 5S RNA synthesized by anucleolate mutants has a shorter half-life than the 5S RNA made by normal embryos. The synthesis of excess 5S RNA and its subsequent degradation in the absence of ribosome production appears to be another example of the phenomenon of wastage of newly synthesized ribosomal RNA.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号