首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
《Process Biochemistry》1999,34(1):17-23
Glucose, peptone and magnesium sulphate were found to be suitable components for the cell growth and glutathione (GSH) production in the yeast strain. Saccharomyces cerevisiae CCRC 21727. The Box–Behnken design and response surface methodology were employed to derive a statistical model to investigate the effects of glucose, peptone and magnesium sulphate concentrations on GSH production. Neural networks were compared with a second-order-polynomial model in predicting the effects of component concentrations on the production of GSH and dry cell weight (DCW). Neural network models can predict cell growth and GSH production more precisely than second-order-response-surface models.  相似文献   

2.
3.
酵母生产谷胱甘肽的培养条件研究   总被引:1,自引:0,他引:1  
应用Plackett-Burman实验设计、响应面分析方法研究了酵母生产谷胱甘肽的培养条件,结果表明:最佳培养条件为初始pH 5.0,培养温度28℃,接种量10%,摇床转速200 r/min,种子液种龄22~23 h。葡萄糖1.95%,糖蜜1.95%,蛋白胨3%,Cys.HCl 0.10%,MgSO4.7H2O 0.5%,甲硫氨酸0.05%,在此优化的条件下培养,谷胱甘肽的产量达235.7 mg/L,比优化前提高45.4%。  相似文献   

4.
Synechocystis sp. PCC 6701 has a brilliantly colored pigment, phycobiliprotein containing phycoerythrin. Culture medium was optimized by sequential designs in order to maximize phycobiliprotein production. The observed fresh weights after 6 days were 0.58 g/L in BG-11, 0.83 g/L in medium for Scenedesmus sp. and 0.03∼0.52 g/L in the other tested media. Medium for Scenedesmus sp. was selected to be optimized by fractional factorial design and central composite design since the medium maintained a more stable pH within a desirable range due to higher contents of phosphate. The fractional factorial design had seven factors with two levels: KNO3, NaNO3, NaH2PO4, Na2HPO4, Ca(NO3)2, FeEDTA, and MgSO4. From the result of fractional factorial design, nitrate and phosphate were identified as significant factors. A central composite design was then applied with four variables at five levels each: nitrate, phosphate, pH, and light intensity. Parameters such as fresh weight and phycobiliprotein contents were used to determine the optimum value of the four variables. The proposed optimum media contains 0.88 g/L of nitrate, 0.32 g/L of phosphate under 25 μE·m−2·s−1 of light intensity. The maximum phycobiliprotein contents have been increased over 400%, from 4.9 to 25.9 mg/L after optimization.  相似文献   

5.
Culture conditions in a jar fermentor for bacterial cellulose (BC) production from A. xylinum BPR2001 were optimized by statistical analysis using Box-Behnken design. Response surface methodology was used to predict the levels of the factors, fructose (X1), corn steep liquor (CSL) (X2), dissolved oxygen (DO) (X3), and agar concentration (X4). Total 27 experimental runs by combination of each factor were carried out in a 10-L jar fermentor, and a three-dimensional response surface was generated to determine the effect of the factors and to find out the optimum concentration of each factor for maximum BC production and BC yield. The fructose and agar concentration highly influenced the BC production and BC yield. However, the optimum conditions according to changes in CSL and DO concentrations were predicted at almost central values of tested ranges. The predicted results showed that BC production was 14.3 g/L under the condition of 4.99% fructose, 2.85% CSL, 28.33% DO, and 0.38% agar concentration. On the other hand, BC yield was predicted in 0.34 g/g under the condition of 3.63% fructose, 2.90% CSL, 31.14% DO, and 0.42% agar concentration. Under optimized culture conditions, improvement of BC production and BC yield were experimentally confirmed, which increased 76% and 57%, respectively, compared to BC production and BC yield before optimizing the culture conditions.  相似文献   

6.
Ergosterol is an essential component of yeast cells that maintains the integrity of the membrane. It was investigated as an important factor in the ethanol tolerance of yeast cells. We investigated the effects of brewing conditions on the ergosterol contents of S. cerevisiae K-9, sake yeast, several kinds of Saccharomyces cerevisiae that produce more than 20% ethanol, and X2180-1A, laboratory yeast. K-9 had a higher total ergosterol contents under all the conditions we examined than X2180-1A. Ethanol and hypoxia were found to have negative and synergistic effects on the total ergosterol contents of both strains, and significantly reduced the free ergosterol contents of X2180-1A but only slightly reduced those of K-9. The maintenance of free ergosterol contents under brewing conditions might be an important character of sake yeast strains. DNA microarray analysis also showed higher expression of ergosterol biosynthesis genes in K-9 than in X2180-1A.  相似文献   

7.
The influence of feedstock amino acids, salt, carbon and nitrogen sources on glutathione production by Saccharomyces cerevisiae FF-8 was investigated. Glucose, yeast extract, KH2PO4, and L-cysteine were found to be suitable feedstock. Highest glutathione production was obtained after cultivation with shaking for 72 h in a medium containing glucose 3.0% (w/v), yeast extract 3.0%, KH2PO4 0.06% and L-cysteine 0.06%. The glutathione concentration achieved using this medium increased 2.27-fold to 204 mg/l compared to YM basal medium.  相似文献   

8.
金城 《微生物学通报》2012,39(1):0138-0138
微生物细胞通常仅含2%3%油脂,但少数微生物含油脂率却可达70%以上,所以高含油脂量使微生物油脂实际开发成为可能。目前用于生产多不饱和脂肪酸的微生物主要为藻类和真菌。尽管微生物油脂是当前的研究热点,已经引起广大研究者的重视,但目前国内外研究大都集中在含油脂量在干重20%以上的微生物,如浅白色隐性酵母、粘红酵母等,而对于酿酒酵母来说,则很少见到研究其产油脂的相关报道。  相似文献   

9.
In a batch mixed culture of Lactobacillus kefiranofaciens and Saccharomyces cerevisiae, which could assimilate lactic acid, cell growth and kefiran production rates of L. kefiranofaciens significantly increased, compared with those in pure cultures. The kefiran production rate was 36 mg l(-1) h(-1) in the mixed culture under the anaerobic condition, which was greater than that in the pure culture (24 mg l(-1) h(-1)). Under the aerobic condition, a more intensive interaction between these two strains was observed and higher kefiran production rate (44 mg l(-1) h(-1)) was obtained compared with that under the anaerobic condition. Kefiran production was further enhanced by an addition of fresh medium in the fed-batch mixed culture. In the fed-batch mixed culture, a final kefiran concentration of 5.41 g l(-1) was achieved at 87 h, thereby attaining the highest productivity at 62 mg l(-1) h(-1). Simulation study considered the reduction of lactic acid in pure culture was performed to estimate the additional effect of coculture with S. cerevisiae. Slightly higher cell growth and kefiran production rates in the mixed culture than those expected from pure culture by simulation were observed. These results suggest that coculture of L. kefiranofaciens and S. cerevisiae not only reduces the lactic acid concentration by consumption but also stimulates cell growth and kefiran production of L. kefiranofaciens.  相似文献   

10.
Mixed culture of Saccharomyces cerevisiae and Acetobacter pasteurianus was carried out for high yield of acetic acid. Acetic acid production process was divided into three stages. The first stage was the growth of S. cerevisiae and ethanol production, fermentation temperature and aeration rate were controlled at 32 °C and 0.2 vvm, respectively. The second stage was the co-culture of S. cerevisiae and A. pasteurianus, fermentation temperature and aeration rate were maintained at 34 °C and 0.4 vvm, respectively. The third stage was the growth of A. pasteurianus and production of acetic acid, fermentation temperature and aeration rate were controlled at 32 °C and 0.2 vvm, respectively. Inoculation volume of A. pasteurianus and S. cerevisiae was 16% and 0.06%, respectively. The average acetic acid concentration was 52.51 g/L under these optimum conditions. To enhance acetic acid production, a glucose feeding strategy was subsequently employed. When initial glucose concentration was 90 g/L and 120 g/L glucose was fed twice during fermentation, acetic acid concentration reached 66.0 g/L.  相似文献   

11.
We have obtained evidence for two structurally and antigenically different Saccharomyces cerevisiae cell wall mannans. One, which occurs widely and is found in S. cerevisiae strain 238C, is already known to be a neutral mannan which yields mannose, mannobiose, mannotriose, and mannotetraose on acetolysis of the (1 --> 6)-linked backbone. The other, which was found in S. cerevisiae brewer's strains, is a phosphomannan with a structure very similar to that of Kloeckera brevis mannan. S. cerevisiae (brewer's yeast strain) was agglutinated by antiserum prepared against Kloeckera brevis cells. The mannan, isolated from a proteolytic digest of the cell wall of the former, did not react with S. cerevisiae 238C antiserum, whereas it cross-reacted strongly with K. brevis antiserum. Controlled acetolysis cleaved the (1 --> 6)-linkages in the polysaccharide backbone and released mannose, mannobiose, mannotriose, and mannotriose phosphate. Mild acid treatment of the phosphomannan hydrolyzed the phosphodiester linkage, yielding phosphomonoester mannan and mannose. The resulting phosphomonoester mannan reacted with antiserum prepared against K. brevis possessing monoester phosphate groups on the cell surface. alpha-d-Mannose-1-phosphate completely inhibited the precipitin reaction between brewer's yeast mannan and the homologous antiserum. Flocculent and nonflocculent strains of this yeast were shown to have similar structural and immunological properties.  相似文献   

12.
The production of ethanol and enriched fructose syrups from a synthetic medium with various sucrose concentrations using the mutant Saccharomyces cerevisiae ATCC 36858 was investigated. In batch tests, fructose yields were above 90% of theoretical values for the sucrose concentrations between 35 g/l and 257 g/l. The specific growth rates and biomass yields were from 0.218 to 0.128 h(-1) and from 0.160 to 0.075 g biomass/g of glucose and fructose consumed, respectively. Ethanol yields were in the range of 72 to 85% of theoretical value when sucrose concentrations were above 81 g/l. The volumetric ethanol productivity was 2.23 g ethanol/(l h) in a medium containing 216 g/l sucrose. Fructo-oligosaccharides and glycerol were also produced in the process. A maximum fructo-oligosaccharides concentration (up to 9 g/l) was attained in the 257 g/l sucrose medium in the first 7 h of the fermentation. These sugars started to be consumed when the concentrations of sucrose in the media were less than 30% of its initial values. The fructo-oligosaccharides mixture was composed of 6-kestose (61.5%), neokestose (29.7%) and 1-kestose (8.8%). The concentration of glycerol produced in the process was less than 9 g/l. These results will be useful in the production of enriched fructose syrups and ethanol using sucrose-based raw materials.  相似文献   

13.
Summary The effect of trace amounts of oxygen on the degree of ethanol inhibition in a continuous anaerobic culture of Saccharomyces cerevisiae was studied at the 100 gl –1 feed glucose concentration level. Results showed that the use of micro-aerobic conditions (0,5% of saturation) enhanced the utilisation of substrate by increasing the ethanol tolerance of the yeast without any significant decrease in the ethanol yield per unit substrate consumed. When the results were fitted to an equation of the form % MathType!MTEF!2!1!+-% feaafiart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn% hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr% 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9% vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x% fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbyacaqG8o% GaaeypaiqabY7agaqcaiaab6cadaWcaaGcbaqcLbyacaqGdbWaaSba% aSqaaKqzagGaae4CaaWcbeaaaOqaaKqzagGaae4qamaaBaaaleaaju% gGbiaabohaaSqabaqcLbyacqGHRaWkcaqGlbWaaSbaaSqaaKqzagGa% ae4CaaWcbeaaaaqcLbyacaGGUaWaaSaaaOqaaKqzagGaae4samaaBa% aaleaajugGbiaabchaaSqabaaakeaajugGbiaabUeadaWgaaWcbaqc% LbyacaqGWbaaleqaaKqzagGaey4kaSIaaeywamaaBaaaleaajugGbi% aabchacaqGZbaaleqaaKqzagGaaiOlaiaacIcacaqGdbWaaSbaaSqa% aKqzagGaae4CaiaabAgaaSqabaqcLbyacqGHsislcaqGdbWaaSbaaS% qaaKqzagGaae4CaaWcbeaajugGbiaacMcaaaaaaa!6301!\[{\text{\mu = \hat \mu }}{\text{.}}\frac{{{\text{C}}_{\text{s}} }}{{{\text{C}}_{\text{s}} + {\text{K}}_{\text{s}} }}.\frac{{{\text{K}}_{\text{p}} }}{{{\text{K}}_{\text{p}} + {\text{Y}}_{{\text{ps}}} .({\text{C}}_{{\text{sf}}} - {\text{C}}_{\text{s}} )}}\]it was found that the values for % MathType!MTEF!2!1!+-% feaafiart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn% hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr% 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9% vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x% fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGabeiVdyaaja% aaaa!373F!\[{\text{\hat \mu }}\], Ks and Yps were the same as for the non-aerobic case while the ethanol inhibition constant, Kp , had increased from 5,2 to 14,0 gl –1.Notation Csf feed substrate concentration - gl –1 - Cs substrate concentration gl –1 - Cp product concentration - gl –1 - Cx cell concentration - gl –1 - D dilution rate - h-1 - Ks substrate saturation constant - gl –1 - Kp product inhibition constant - gl –1 - m maintenance coefficient - h–1 - Yps product yield coefficient - g EtOH/g glucose - Yxs cell yield coefficient - g cells/g glucose - specific growth rate - h–1 - % MathType!MTEF!2!1!+-% feaafiart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn% hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr% 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9% vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x% fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGabeiVdyaaja% aaaa!373F!\[{\text{\hat \mu }}\] maximum specific growth rate - h–1  相似文献   

14.
Media components were optimized by statistical design for cell growth and PHB production of Methylobacterium extorquens DSMZ 1340. Four important components of growth media were optimized by central composite design. The growth increased from an OD = 1.35 for Choi medium as control to an OD = 2.15 for optimal medium. Then media components for PHB production were optimized. Optimization of five important factors was conducted by response surface method. The optimal composition of PHB production medium was found to be at 7.8 (g/L) Na2HPO4 · 12H2O, and surprisingly at zero concentration of (NH4)2SO4, KH2PO4, MgSO4 and MnSO4. The PHB production was found to be 2.95 (g/L) at this medium. RSM results indicated that a deficiency of nitrogen and magnesium is crucial for PHB accumulation in this microorganism. Also, PHB production was carried out in a 5 L fermentor at the optimum condition which resulted in 9.5 g/L PHB and 15.4 g/L cell dry weight with 62.3% polymer content.  相似文献   

15.
Hybridoma 130-8F producing anti-F monoclonal antibodies (MAb) were grown in batch and fed-batch mode with glutamine as the limiting substrate. The initial concentration of glucose varied between 10 and 25 mM but was not growth limiting. Monoclonal antibody production was identified as being partially growth associated. Employing the cumulative cell hour concept, external metabolic flux estimates were calculated during the exponential growth phase for MAb, glucose, amino acids, ammonia and lactate. Through nutritional profiling using principal component analysis (PCA) followed by partial least squares regression (PLS), key metabolites were identified and grouped for significant positive, significant negative, low level, and negligible correlation to MAb production, cellular growth, glucose consumption, and ammonia and lactate production. Significant relationships peculiar to Hybridoma 130-8F were identified, such as demand for two normally non-essential amino acids (asparagine and aspartic acid), and the positive correlation between MAb and ammonia production. Industrial Sponsor: Sanofi Pasteur (formerly Aventis Pasteur), Toronto, Canada.  相似文献   

16.
17.
We examined glucose 6-phosphate dehydrogenase (G6PD) production by fed-batch cultivation, using a recombinant strain of Saccharomyces cerevisiae W303-181 overexpressing this enzyme. The cultivations were carried out in a 3 L fermenter at pH 5.7, 30 °C, 2.0 vvm aeration, 200 rpm agitation and an inoculum concentration of 1.0 g/L. The volume of the culture medium in the fed-batch process varied from 1.333 to 2.0 L, due to the addition of 15.0 g/L glucose solution during 5 h. Different feeding rates were studied (exponentially increasing and decreasing feeding rates), and the feeding profile was determined by values of the parameter K (time constant), namely: 0.2, 0.5 and 0.8 h−1. The best enzyme production (847 U/L) was obtained with an exponentially increasing feeding rate and K = 0.2 h−1. The results attained also showed that this process is promising for G6PD production.  相似文献   

18.
Wine yeast starters that contain a mixture of different industrial yeasts with various properties may soon be introduced to the market. The mechanisms underlying the interactions between the different strains in the starter during alcoholic fermentation have never been investigated. We identified and investigated some of these interactions in a mixed culture containing two yeast strains grown under enological conditions. The inoculum contained the same amount (each) of a strain of Saccharomyces cerevisiae and a natural hybrid strain of S. cerevisiae and Saccharomyces uvarum. We identified interactions that affected biomass, by-product formation, and fermentation kinetics, and compared the redox ratios of monocultures of each strain with that of the mixed culture. The redox status of the mixed culture differed from that of the two monocultures, showing that the interactions between the yeast strains involved the diffusion of metabolite(s) within the mixed culture. Since acetaldehyde is a potential effector of fermentation, we investigated the kinetics of acetaldehyde production by the different cultures. The S. cerevisiae-S. uvarum hybrid strain produced large amounts of acetaldehyde for which the S. cerevisiae strain acted as a receiving strain in the mixed culture. Since yeast response to acetaldehyde involves the same mechanisms that participate in the response to other forms of stress, the acetaldehyde exchange between the two strains could play an important role in inhibiting some yeast strains and allowing the growth of others. Such interactions could be of particular importance in understanding the ecology of the colonization of complex fermentation media by S. cerevisiae.  相似文献   

19.
20.
Mannans of the yeast Saccharomyces cerevisiae have been implicated as containing the allergens to which bakers and brewers are sensitive and also the antigen recognized by patients with Crohn's disease. A fraction of S. cerevisiae mannan, Sc500, having high affinity for antibodies in Crohn's patients has been characterized by NMR spectroscopy followed by fragmentation using alkaline elimination, partial acid hydrolysis and acetolysis. The released oligosaccharides were separated by gel filtration on a Biogel P4 column and analyzed by fluorescence labeling, HPLC and methylation analysis. The relationship between structure and antigen activity was measured by competitive ELISA. The antigenic activity of the original high molecular weight mannan could be ascribed to terminal Man13Man12 sequences which are rarely found in human glycoproteins but were over-represented in Sc500 compared to other yeast mannans.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号