首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 218 毫秒
1.
It was shown previously that a significant fraction of the myosin crossbridges is attached to actin in the skinned rabbit psoas fibers under relaxed conditions at low ionic strength and low temperature (Brenner, B., M. Schoenberg, J. M. Chalovich, L. E. Greene, and E. Eisenberg. 1982. Proc. Natl. Acad. Sci. USA. 79:7288-7291; Brenner, B., L. C. Lu, and R. J. Podolsky. 1984. Biophys. J. 46:299-306). In the present work, the structure of the attached crossbridges in the relaxed state between ionic strengths of 20 and 100 mM, as compared with that in the rigor state, is further examined by equatorial x-ray diffraction. Mass distributions projected along the fiber axis are reconstructed based on the first five equatorial reflections such that the spatial resolution is 128 A. The fraction of crossbridges attached under relaxed conditions are estimated to be in the range of 30% (at 100 mM ionic strength) and 60% (at 20 mM). The reconstructed density maps suggest that in the relaxed state, upon attachment the part of the crossbridge that centers around the thin filament is small, and the attachment does not significantly alter the center of mass of the myosin head distribution around the thick filament backbone. In contrast, accretion of mass in the rigor state occurs in a wider region surrounding the thin filament. In this case, mass in the surface region of the thick filament backbone is shifted slightly outward, probably by approximately 10 A. A schematic model for interpreting the present data is presented.  相似文献   

2.
ATP binding and crossbridge structure in muscle   总被引:3,自引:0,他引:3  
Thick filaments extracted from insect flight muscle were used in examining whether the dependence of actin-myosin crossbridge structure on nucleotide, generally presumed to underlie the power-stroke, is exhibited by myosin alone. The strongly periodic crossbridge arrangement seen in the presence of ATP (corresponding to relaxed muscle) is reversibly lost in conditions that induce rigor in intact muscle fibres. These observations suggest that the power-stroke may involve changes in the steric relation of the myosin head to the thick as well as to the thin filament.  相似文献   

3.
Electron microscopy has been used to study the structural changes that occur in the myosin filaments of tarantula striated muscle when they are phosphorylated. Myosin filaments in muscle homogenates maintained in relaxing conditions (ATP, EGTA) are found to have nonphosphorylated regulatory light chains as shown by urea/glycerol gel electrophoresis and [32P]phosphate autoradiography. Negative staining reveals an ordered, helical arrangement of crossbridges in these filaments, in which the heads from axially neighboring myosin molecules appear to interact with each other. When the free Ca2+ concentration in a homogenate is raised to 10(-4) M, or when a Ca2+-insensitive myosin light chain kinase is added at low Ca2+ (10(-8) M), the regulatory light chains of myosin become rapidly phosphorylated. Phosphorylation is accompanied by potentiation of the actin activation of the myosin Mg-ATPase activity and by loss of order of the helical crossbridge arrangement characteristic of the relaxed filament. We suggest that in the relaxed state, when the regulatory light chains are not phosphorylated, the myosin heads are held down on the filament backbone by head-head interactions or by interactions of the heads with the filament backbone. Phosphorylation of the light chains may alter these interactions so that the crossbridges become more loosely associated with the filament backbone giving rise to the observed changes and facilitating crossbridge interaction with actin.  相似文献   

4.
Two attached non-rigor crossbridge forms in insect flight muscle   总被引:1,自引:0,他引:1  
We have performed thin-section electron microscopy on muscle fibers fixed in different mechanically monitored states, in order to identify structural changes in myosin crossbridges associated with force production and maintenance. Tension and stiffness of fibers from glycerinated Lethocerus flight muscle were monitored during a sequence of conditions using AMPPNP and then AMPPNP plus increasing concentrations of ethylene glycol, which brought fibers through a graded sequence from rigor relaxation. Two intermediate crossbridge forms distinct from the rigor or relaxed forms were observed. The first was produced by AMPPNP at 20 degrees C, which reduced isometric tension 60 to 70% below rigor level without reducing rigor stiffness. Electron microscopy of these fibers showed that, in spite of the drop in tension, no obvious change from the 45 degrees crossbridge angle characteristic of rigor occurred. However, the thick filament ends of the crossbridges were altered from their rigor positions, so that they now marked a 14.5 nm repeat, and formed four separate origins at each crossbridge level. The bridges were also less slewed and bent than rigor bridges, as seen in transverse sections. The second crossbridge form was seen in glycol-AMPPNP at 4 degrees C, just below the glycol concentration that produced mechanical relaxation. These fibers retained 90% of rigor stiffness at 40 Hz oscillation, but would not bear sustained tension. Stiffness was also high in the presence of calcium at room temperature under similar conditions. Electron microscopy showed crossbridges projecting from the thick filaments at an angle that centered around 90 degrees, rather than the 45 degree angle familiar from rigor. This coupling of relaxed appearance with persistent stiffness suggests that the 90 degree form may represent a weakly attached crossbridge state like that proposed to precede force development in current models of the crossbridge power stroke.  相似文献   

5.
The myosin crossbridge array, positions of non-crossbridge densities on the backbone, and the A-band "end filaments" have been compared in chemically skinned, unfixed, uncryoprotected relaxed, and rigor plaice fin muscles using the freeze-fracture, deep-etch, rotary-shadowing technique. The images provide a direct demonstration of the helical packing of the myosin heads in situ in relaxed muscle and show rearrangements of the myosin heads, and possibly of other myosin filament proteins, when the heads lose ATP on going into rigor. In the H-zone these changes are consistent with crossbridge changes previously shown by others using freeze-substitution. In addition, new evidence is presented of protein rearrangements in the M-region (bare zone), associated with the transition from the relaxed to the rigor state, including a 27-nm increase in the apparent width of the M-region. This is interpreted as being mostly due to loss or rearrangement of a nonmyosin (M9) protein component at the M-region edge. The structure and titin periodicity of the end-filaments are described, as are suggestions of titin structure on the myosin filament backbone.  相似文献   

6.
Rapid freezing followed by freeze-substitution has been used to study the ultrastructure of the myosin filaments of live and demembranated frog sartorius muscle in the states of relaxation and rigor. Electron microscopy of longitudinal sections of relaxed specimens showed greatly improved preservation of thick filament ultrastructure compared with conventional fixation. This was revealed by the appearance of a clear helical arrangement of myosin crossbridges along the filament surface and by a series of layer line reflections in computed Fourier transforms of sections, corresponding to the layer lines indexing on a 43 nm repeat in X-ray diffraction patterns of whole, living muscles. Filtered images of single myosin filaments were similar to those of negatively stained, isolated vertebrate filaments and consistent with a three-start helix. M-line and other non-myosin proteins were also very well preserved. Rigor specimens showed, in the region of overlapping myosin and actin filaments, periodicities corresponding to the 36, 24, 14.4 and 5.9 nm repeats detected in X-ray patterns of whole muscle in rigor; in the H-zone they showed a disordered array of crossbridges. Transverse sections, whose Fourier transforms extend to the (3, 0) reflection, supported the view, based on X-ray diffraction and conventional electron microscopy, that in the overlap zone of relaxed muscle most of the crossbridges are detached from the thin filaments while in rigor they are attached. We conclude that the rapid freezing technique preserves the molecular structure of the myofilaments closer to the in vivo state (as monitored by X-ray diffraction) than does normal fixation.  相似文献   

7.
Rigor crossbridges are double-headed in fast muscle from crayfish   总被引:2,自引:0,他引:2       下载免费PDF全文
The structure of rigor crossbridges was examined by comparing rigor crossbridges in fast muscle fibers from glycerol-extracted abdominal flexor muscle of crayfish with those in "natively decorated" thin filaments from the same muscle. Natively decorated thin filaments were obtained by dissociating the backbone of the myosin filaments of rigor myofibrils in 0.6 M KCl. Intact fibers were freeze-fractured, deep-etched, and rotary shadowed; isolated filaments were either negatively stained or freeze dried and rotary shadowed. The crossbridges on the natively decorated actin maintain the original spacing and the disposition in chevrons and double chevrons for several hours, indicating that no rearrangement of the actomyosin interactions occurs. Thus the crossbridges of the natively decorated filaments were formed within the geometrical constraints of the intact myofibril. The majority of crossbridges in the intact muscle have a triangular shape indicative of double-headed crossbridge. The triangular shape is maintained in the isolated filaments and negative staining resolves two heads in a single crossbridge. In the isolated filaments, crossbridges are attached at uniform acute angles. Unlike those in insect flight muscle (Taylor et al., 1984), lead and rear elements of the double chevron may be both double-headed. Deep-etched images reveal a twisted arrangement of subfilaments in the backbone of the thick filament.  相似文献   

8.
Reciprocal coupling between troponin C and myosin crossbridge attachment   总被引:5,自引:0,他引:5  
A S Zot  J D Potter 《Biochemistry》1989,28(16):6751-6756
The attachment of cycling myosin crossbridges to actin and the resultant muscle contraction are regulated in skeletal muscle by the binding of Ca2+ to the amino-terminal, regulatory sites of the troponin C (TnC) subunit of the thin filament protein troponin. Conversely, the attachment of crossbridges to actin has been shown to alter the affinity of TnC for Ca2+. In this study, fluorescently labeled TnC incorporated into reconstituted thin filaments was used to investigate the relationship between crossbridge attachment to actin and structural changes in the amino-terminal region of TnC. Fluorescence intensity changes were measured under the following conditions: saturating [Ca2+] in the absence of crossbridges, rigor crossbridge attachment in the presence and absence of Ca2+, and cycling crossbridge attachment. The percent of heavy meromyosin crossbridges associated with the thin filaments under these conditions was also determined. The results show that, in addition to the binding of Ca2+ to TnC, the attachment of both rigor and cycling crossbridges to actin alters the structure of TnC near the regulatory, Ca2+-specific sites of the molecule. A differential coupling between weakly versus strongly bound crossbridge states and TnC structure was detected, suggesting a possible differential regulation of these states by conformational changes in TnC. These findings illustrate a reciprocal coupling, via thin filament protein interactions, between structural changes in TnC and the attachment of myosin crossbridges to actin, such that each can influence the other, and indicate that TnC is not simply an on-off switch but may exist in a number of different conformations.  相似文献   

9.
In the presence of ATP and absence of Ca2+, muscle crossbridges have either MgATP or MgADP.Pi bound at the active site (S. B. Marston and R. T. Tregear, Nature [Lond.], 235:22:1972). The behavior of these myosin adenosine triphosphate (M.ATP) crossbridges, both in relaxed skinned rabbit psoas and frog semitendinosus fibers, was analyzed. At very low ionic strength, T = 5 degrees C, mu = 20 mM, these crossbridges spend a large fraction of the time attached to actin. In rabbit, the attachment rate constants at low salt are 10(4) - 10(5) s-1, and the detachment rate constants are approximately 10(4) s-1. When ionic strength is increased up to physiological values by addition of 140 mM potassium propionate, the major effect is a weakening of the crossbridge binding constant approximately 30-40-fold. This effect occurs because of a large decrease, approximately 100-fold, in the crossbridge attachment rate constants. The detachment rate constants decrease only 2-3-fold. The effect of ionic strength on crossbridge binding in the fiber is very similar to the effect of ionic strength on the binding of myosin subfragment-1 to unregulated actin in solution. Thus, the effect of increasing ionic strength in fibers appears to be a direct effect on crossbridge binding rather than an effect on troponin-tropomyosin. The finding that crossbridges with ATP bound at the active site can and do attach to actin over a wide range of ionic strengths strongly suggests that troponin-tropomyosin keeps a muscle relaxed by blocking a step subsequent to crossbridge attachment. Thus, rather than troponin-tropomyosin serving to keep a muscle relaxed by inhibiting attachment, it seems quite possible that the main way in which troponin-tropomyosin regulates muscle activity is by preventing the weakly-binding relaxed crossbridges from going on through the crossbridge cycle into more strongly-binding states.  相似文献   

10.
Subfragment 2 (S2), the segment that links the two myosin heads to the thick filament backbone, may serve as a swing-out adapter allowing crossbridge access to actin, as the elastic component of crossbridges and as part of a phosphorylation-regulated on-off switch for crossbridges in smooth muscle. Low-salt expansion increases interfilament spacing (from 52 nm to 67 nm) of rigor insect flight muscle fibers and exposes a tethering segment of S2 in many crossbridges. Docking an actoS1 atomic model into EM tomograms of swollen rigor fibers identifies in situ for the first time the location, length and angle assignable to a segment of S2. Correspondence analysis of 1831 38.7 nm crossbridge repeats grouped self-similar forms from which class averages could be computed. The full range of the variability in angles and lengths of exposed S2 was displayed by using class averages for atomic fittings of acto-S1, while S2 was modeled by fitting a length of coiled-coil to unaveraged individual repeats. This hybrid modeling shows that the average length of S2 tethers along the thick filament (except near the tapered ends) is approximately 10 nm, or 16% of S2's total length, with an angular range encompassing 90 degrees axially and 120 degrees azimuthally. The large range of S2 angles indicates that some rigor bridges produce positive force that must be balanced by others producing drag force. The short tethering segment clarifies constraints on the function of S2 in accommodating variable myosin head access to actin. We suggest that the short length of S2 may also favor intermolecular head-head interactions in IFM relaxed thick filaments.  相似文献   

11.
Equatorial X-ray diffraction patterns from single skinned fibres from bony fish muscle (turbot) were obtained with the fibres at 6 degrees C bathed in relaxing solutions of 170 down to 26 mM ionic strength. Diffraction patterns from rigor fibres were also obtained as controls. Unlike fibres from rabbit muscle, which show very clear evidence of substantial crossbridge formation at low ionic strength in what is mechanically a rapid equilibrium ("weak-binding") state (Brenner et al., 1982), diffraction patterns from bony fish fibres showed only a small change in relative peak intensities at low ionic strength (26 mM) compared with normal (170 mM) ionic strength. However, there was a slight ordering of the filament lattice at low ionic strength. The specimen temperature used (about 6 degrees C) was not far from the normal physiological temperature of the fish. Likewise, only a small change was seen by Xu et al. (1987) in patterns from frog fibres at low ionic strength at 2 to 6 degrees C. (Rabbit fibres previously studied, where large changes were seen at temperatures of 5 to 20 degrees C, were about 17 to 32 degrees C below physiological.) The I11/I10 ratio for fish fibres at 26 mM ionic strength was actually lower than that for rabbit even at normal ionic strength. This may be associated with an intrinsic structural difference between these muscles or alternatively with the disordering of the crossbridge helix in rabbit muscle found at low temperature by Wray (1987), and could support the view that rabbit fibres at 5 degrees C and normal ionic strength may already have a significant population of weak-binding crossbridges.  相似文献   

12.
Thick filaments have been isolated from the striated adductor muscle of the scallop and examined by electron microscopy after negative staining. Many filaments appear intact, and reveal a centrally located bare-zone and a well-defined helical surface array of myosin crossbridges characterized by a 145 A axial period and prominent helical tracks of pitch 480 A. Heavy-metal shadowing shows that these helices are right-handed. A small perturbation of alternate crossbridge levels produces an axial period of 290 A, which is most prominent in a region on either side of the bare-zone. Image analysis reveals that the crossbridge array has 7-fold rotational symmetry, one of the possibilities suggested by earlier X-ray diffraction studies of native filaments in scallop muscle. A low-resolution three-dimensional reconstruction shows elongated surface projections ("crossbridges") that probably represent unresolved pairs of myosin heads. They run almost parallel to the filament surface, but are slewed slightly from the axis so that they lie along the right-handed helical tracks of pitch 480 A. The connection to the filament backbone probably occurs at the end of the crossbridges nearer the bare-zone; thus, their sense of tilt appears to be opposite to that of rigor attachment to actin. The 290 A period arises from a different distribution of crossbridge density at alternate levels; in addition, there are weak connections between the top of one crossbridge and the bottom of the next, 145 A away. The prominence of the 290 A period near the bare-zone suggests that anti-parallel molecular interactions are mainly responsible for this perturbation.  相似文献   

13.
Tropomyosin movements on thin filaments are thought to sterically regulate muscle contraction, but have not been visualized during active filament sliding. In addition, although 3-D visualization of myosin crossbridges has been possible in rigor, it has been difficult for thick filaments actively interacting with thin filaments. In the current study, using three-dimensional reconstruction of electron micrographs of interacting filaments, we have been able to resolve not only tropomyosin, but also the docking sites for weak and strongly bound crossbridges on thin filaments. In relaxing conditions, tropomyosin was observed on the outer domain of actin, and thin filament interactions with thick filaments were rare. In contracting conditions, tropomyosin had moved to the inner domain of actin, and extra density, reflecting weakly bound, cycling myosin heads, was also detected, on the extreme periphery of actin. In rigor conditions, tropomyosin had moved further on to the inner domain of actin, and strongly bound myosin heads were now observed over the junction of the inner and outer domains. We conclude (1) that tropomyosin movements consistent with the steric model of muscle contraction occur in interacting thick and thin filaments, (2) that myosin-induced movement of tropomyosin in activated filaments requires strongly bound crossbridges, and (3) that crossbridges are bound to the periphery of actin, at a site distinct from the strong myosin binding site, at an early stage of the crossbridge cycle.  相似文献   

14.
Myosin filament structure in vertebrate smooth muscle   总被引:1,自引:0,他引:1       下载免费PDF全文
The in vivo structure of the myosin filaments in vertebrate smooth muscle is unknown. Evidence from purified smooth muscle myosin and from some studies of intact smooth muscle suggests that they may have a nonhelical, side-polar arrangement of crossbridges. However, the bipolar, helical structure characteristic of myosin filaments in striated muscle has not been disproved for smooth muscle. We have used EM to investigate this question in a functionally diverse group of smooth muscles (from the vascular, gastrointestinal, reproductive, and visual systems) from mammalian, amphibian, and avian species. Intact muscle under physiological conditions, rapidly frozen and then freeze substituted, shows many myosin filaments with a square backbone in transverse profile. Transverse sections of fixed, chemically skinned muscles also show square backbones and, in addition, reveal projections (crossbridges) on only two opposite sides of the square. Filaments gently isolated from skinned smooth muscles and observed by negative staining show crossbridges with a 14.5-nm repeat projecting in opposite directions on opposite sides of the filament. Such filaments subjected to low ionic strength conditions show bare filament ends and an antiparallel arrangement of myosin tails along the length of the filament. All of these observations are consistent with a side-polar structure and argue against a bipolar, helical crossbridge arrangement. We conclude that myosin filaments in all smooth muscles, regardless of function, are likely to be side-polar. Such a structure could be an important factor in the ability of smooth muscles to contract by large amounts.  相似文献   

15.
The low-angle X-ray diffraction pattern from Lethocerus flight muscle fibres was recorded in rigor or under two conditions that modify crossbridge structure and behaviour, aqueous adenylylimidodiphosphate (AMPPNP) and AMPPNP + calcium in an ethylene glycol-water mixture. The effects on the 38.7 nm layer-line peaks (hk.6) of the diffraction patterns were studied in detail. In aqueous AMPPNP at room temperature, a condition in which rigor tension drops to half without loss of stiffness, the peaks remained nearly as intense as in rigor except for the 10.6, which dropped to half. In 20% (v/v) ethylene glycol-AMPPNP + 100 microM-Ca2+ at 23 degrees C (gly + pnp + Ca), a condition which removed muscle tension but left stiffness close to the rigor value, the 10.6 and 11.6 peaks greatly decreased but the 31.6 remained relatively high. The 14.5 nm meridional peak (00.16) became stronger on addition of AMPPNP and again on adding glycol + calcium. Considered in terms of constructively interfering filaments and crossbridges, the X-ray data indicated a transfer of diffracting crossbridge mass towards the thick filament as relaxation proceeds. We compared the X-ray diffraction patterns and crossbridge structure seen with electron microscopy (EM) under the same chemical conditions. EM and X-ray observations were mutually quite consistent overall. However, X-ray data indicated that more crossbridge mass was stereospecifically related to actin before fixation in the partially relaxed state (gly + pnp + Ca) than was suggested by the disordered crossbridge profiles seen by EM. We conclude that myosin heads at the start of the power stroke may both be closely related to their thick filament origins and form actin-determined attachments to the thin filament.  相似文献   

16.
Tarantula leg muscles in the relaxed state were rapidly frozen against a copper block cooled with liquid helium. Thin longitudinal sections of freeze-substituted specimens, both live and skinned, clearly showed the helical tracks of crossbridges on the surface of the myosin filaments, which are not preserved by conventional fixation. Fourier transforms of selected filaments showed a myosin layer line pattern, similar to that observed in X-ray diffraction patterns of intact tarantula muscle, extending to the sixth order of the 43.5 nm X-ray repeat. The phases of corresponding reflections were similar on the two sides of the meridian on the first layer line, and the crossbridge arrangement showed a line of mirror symmetry running down the center of the filament. These observations show that the number of helices (N) is even, in agreement with N = 4 determined from image analysis of negatively stained, isolated tarantula filaments (Crowther et al., J. Mol. Biol. 184, 429-439, 1985). Filtered images showed clear detail of the crossbridge helices and were similar to filtered images of negatively stained, isolated thick filaments. Thus, rapid freezing combined with freeze-substitution preserves the crossbridges in a three-dimensional arrangement approximating that occurring in vivo.  相似文献   

17.
The maximum chord of the myosin heads is comparable to the closest surface-to-surface spacing between the myofilaments in a muscle at the slack length. Therefore, when the sarcomere length increases or when the fibre is compressed, the surface-to-surface myofilament spacing becomes lower than the head long axis. We conclude that, in stretched or compressed fibres, some crossbridges cannot attach, owing to steric hindrance. When the amount of compression is limited, this hindrance may be overcome by a tilting of the heads in the plane perpendicular to the filament axes; in this case, there is no consequence as concerns the crossbridge properties. In highly compressed fibres, the crossbridges become progressively hindered and all the crossbridges are hindered for an axis-to-axis spacing representing about 60% of the spacing observed under zero external osmotic pressure. In this case, both the isometric tension and the ATPase activity of the fibre are zero. In fibres stretched up to 3.77 microns (sarcomere length corresponding to the disappearance of the overlap between the thick and the thin filaments), the ratio of hindered crossbridges over the functional crossbridges may be estimated at about 55%. In stretched fibres, a noticeable proportion of crossbridges are sterically hindered and the crossbridges performance (e.g. constants of attachment and detachment) depends on filament spacing, i.e. on sarcomere length. Therefore, we think it is probably impossible to consider the crossbridges as independent force converters, since this idea requires that the crossbridge properties are independent of sarcomere length. In this connection, all the experiments performed on osmotically compressed fibres are of major importance for the understanding of the true mechanisms of muscle contraction.  相似文献   

18.
We have investigated the structure of the crossbridges in muscles rapidly frozen while relaxed, in rigor, and at various times after activation from rigor by flash photolysis of caged ATP. We used Fourier analysis of images of cross sections to obtain an average view of the muscle structure, and correspondence analysis to extract information about individual crossbridge shapes. The crossbridge structure changes dramatically between relaxed, rigor, and with time after ATP release. In relaxed muscle, most crossbridges are detached. In rigor, all are attached and have a characteristic asymmetric shape that shows strong left-handed curvature when viewed from the M-line towards the Z-line. Immediately after ATP release, before significant force has developed (20 ms) the homogeneous rigor population is replaced by a much more diverse collection of crossbridge shapes. Over the next few hundred milliseconds, the proportion of attached crossbridges changes little, but the distribution of the crossbridges among different structural classes continues to evolve. Some forms of attached crossbridge (presumably weakly attached) increase at early times when tension is low. The proportion of several other attached non-rigor crossbridge shapes increases in parallel with the development of active tension. The results lend strong support to models of muscle contraction that have attributed force generation to structural changes in attached crossbridges.  相似文献   

19.
It is commonly believed, for both vertebrate striated and insect flight muscle, that when the ATP analogue adenyl-5'-yl imidodiphosphate (AMPPNP) is added to the muscle fiber in rigor, it causes the fiber to lengthen by 0.15%. This has been interpretated (Marston S.B., C.D. Roger, and R.T. Tregear. 1976. J. Mol. Biol. 104:263-267) as suggesting (a) that in rigor the crossbridge is fixed to, i.e., almost never detaches from the actin filament; (b), that the crossbridge remains fixed to the actin filament after AMPPNP addition; and (c) that the ability of AMPPNP to cause apparent lengthening of a muscle fiber is due to its ability to cause a conformational change in the myosin crossbridge that has an axial component of approximately 1.6 nm/half-sarcomere. The present study, done only on chemically-skinned rabbit psoas fibers, confirms that AMPPNP can cause muscle fibers to lengthen by 0.15% but only for a narrow set of experimental conditions. When experimental conditions are varied over a wider range, it becomes apparent that the extent of lengthening of a rigor muscle fiber upon AMPPNP addition depends almost entirely on the strain present in the rigor fiber before AMPPNP addition. Addition of AMPPNP to an unstrained rigor fiber (one supporting zero tension), induces zero length change while addition of AMPPNP to very highly strained rigor fibers induces length changes greater than 0.15%. The data thus do not support the hypotheses that the crossbridges remain fixed to the actin filament after AMPPNP addition and that the size of the apparent length change induced by AMPPNP is related to the size of the axial component of a conformational change.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

20.
Three-dimensional structure of the insect (Lethocerus) flight muscle M-band   总被引:2,自引:0,他引:2  
The oval myosin filament profiles in transverse sections through the M-band of Lethocerus flight muscle are arranged in one of three orientations 60 degrees apart and point along the 11 directions of the hexagonal filament lattice. Relative orientations are not systematically related to give a superlattice structure, but neither are the orientations arranged completely randomly. In fact there is a nearly random structure with a slight bias towards adjacent filaments being identically oriented. This form of M-band structure is explained in terms of interactions between quasi-equivalent M-bridges. Its implications with regard to myosin crossbridge arrangement depend on the rotational symmetry of the crossbridge helix. For 6-stranded helices, 60 degrees rotations have no noticeable effect. However, in the case of the more likely 4-stranded structure, our results show that the crossbridge origins in the insect flight muscle A-band would be highly disordered. This disorder must be accounted for in interpreting both the flared-X crossbridge interactions seen in transverse sections of rigor insect flight muscle and the beautiful X-ray diffraction patterns from the same preparation. It is likely that in rigor insect muscle, some flared-Xs have the two heads of single myosin molecules interacting with two different actin filaments, whereas other flared-Xs have both of the myosin heads in one molecule interacting with the same actin filament.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号