首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
To identify the amyloid beta peptide (Abeta) 1-42-degrading enzyme whose activity is inhibited by thiorphan and phosphoramidon in vivo, we searched for neprilysin (NEP) homologues and cloned neprilysin-like peptidase (NEPLP) alpha, NEPLP beta, and NEPLP gamma cDNAs. We expressed NEP, phosphate-regulating gene with homologies to endopeptidases on the X chromosome (PEX), NEPLPs, and damage-induced neuronal endopeptidase (DINE) in 293 cells as 95- to 125-kDa proteins and found that the enzymatic activities of PEX, NEPLP alpha, and NEPLP beta, as well as those of NEP and DINE, were sensitive to thiorphan and phosphoramidon. Among the peptidases tested, NEP degraded both synthetic and cell-secreted Abeta1-40 and Abeta1-42 most rapidly and efficiently. PEX degraded cold Abeta1-40 and NEPLP alpha degraded both cold Abeta1-40 and Abeta1-42, although the rates and the extents of the digestion were slower and less efficient than those exhibited by NEP. These data suggest that, among the endopeptidases whose activities are sensitive to thiorphan and phosphoramidon, NEP is the most potent Abeta-degrading enzyme in vivo. Therefore, manipulating the activity of NEP would be a useful approach in regulating Abeta levels in the brain.  相似文献   

3.
A new hexapeptide CMC-Ala-Gly-Gly-Trp-Phe-Arg was used as a substrate for assay of endothelin-converting (ECE; EC 3.4.24.71) and angiotensin-converting (ACE; EC 3.4.15.1) enzymes and of neutral endopeptidase (NEP; EC 3.4.24.11). The specific inhibitors lisinopril (for ACE) and thiorphan (for NEP) were used for discrimination between activities of these enzymes.  相似文献   

4.
A peptidyl dipeptidase-4 (bacterial PDP-4) was purified to near homogeneity from a supernatant of Pseudomonas maltophilia extracellular medium. Bacterial PDP-4 is a single-polypeptide-chain enzyme, 82 kDa, with an alkaline isoelectric point. Peptides susceptible to hydrolysis by bacterial PDP-4 include angiotensin 1, bradykinin, enkephalins, atriopeptin 2, and smaller synthetic peptides. N-acylated tripeptides are hydrolyzed, but free tripeptides are not. A free carboxy terminus is required for hydrolysis. Peptides with ultimate and penultimate Pro residues are not hydrolyzed. The enzyme does not require an anion for activity. Bacterial PDP-4 was inhibited by EDTA and the dipeptide Phe-Arg. Thiorphan was an inhibitor only at levels well above those required for inhibition of neutral metalloendopeptidase (NEP), an enzyme for which thiorphan is specific. A second NEP and thermolysin inhibitor, phosphoramidon, did not inhibit bacterial PDP-4. The potent angiotensin-converting enzyme inhibitor lisinopril was not inhibitory. Bacterial PDP-4 is distinguished from a similar enzyme from Escherichia coli, which is not susceptible to EDTA inhibition, and one from Corynebacterium equi, which hydrolyzes free tripeptides. These data indicate that the bacterial PDP-4 catalytic site is unlike those of other enzymes that function either wholly or in part as peptidyl dipeptidases.  相似文献   

5.
The closely related metalloendopeptidases EC (EP24.15; thimet oligopeptidase) and 24.16 (EP24.16; neurolysin) cleave a number of vasoactive peptides such as bradykinin and neurotensin in vitro. We have previously shown that hypotensive responses to bradykinin are potentiated by an inhibitor of EP24.15 and EP24.16 (26), suggesting a role for one or both enzymes in bradykinin metabolism in vivo. In this study, we have used selective inhibitors that can distinguish between EP24.15 and EP24.16 to determine their activity in cultured endothelial cells (the transformed human umbilical vein endothelial hybrid cell line EA.hy926 or ovine aortic endothelial cells). Endopeptidase activity was assessed using a specific quenched fluorescent substrate [7-methoxycoumarin-4-acetyl-Pro-Leu-Gly-d-Lys(2,4-dinitrophenyl)], as well as the peptide substrates bradykinin and neurotensin (assessed by high-performance liquid chromatography with mass spectroscopic detection). Our results indicate that both peptidases are present in endothelial cells; however, EP24.16 contributes significantly more to substrate cleavage by both cytosolic and membrane preparations, as well as intact cells, than EP24.15. These findings, when coupled with previous observations in vivo, suggest that EP24.16 activity in vascular endothelial cells may play an important role in the degradation of bradykinin and/or other peptides in the circulation.  相似文献   

6.
Neprilysin (neutral endopeptidase, enkephalinase, CALLA, CD10, NEP) is a regulatory Zn metallopeptidase expressed in the brush border membranes of the kidney and has been found in porcine chondrocytes and rat articular cartilage as well as other cell types and tissues. Although its function in cartilage is not currently known, previous observations of high levels of NEP enzymatic activity in the synovial fluid of arthritic patients and on the chondrocyte membranes of human osteoarthritic cartilage have led to the hypothesis that NEP is involved in the inflammation or degradation pathways in articular cartilage. Our study localized endogenous NEP to the membranes of mature bovine articular chondrocytes in a tissue explant model and demonstrated that the addition of soluble recombinant NEP (sNEP) to the culture medium of bovine cartilage explants leads to the degradation of aggrecan through the action of aggrecanase. A 6-day exposure to sNEP was necessary to initiate the degradation, suggesting that the chondrocytes were responding in a delayed manner to an altered composition of regulatory peptides. This NEP-induced degradation was completely inhibited by the NEP inhibitors thiorphan and phosphoramidon. These results suggest that NEP is present as a transmembrane enzyme on articular chondrocytes where it can cleave regulatory peptides and lead to the induction of aggrecanase.  相似文献   

7.
Abstract Zinc metallopeptidases of bacterial pathogens are widely distributed virulence factors and represent promising pharmacological targets. In this work, we have characterized Zmp1, a zinc metallopeptidase identified as a virulence factor of Mycobacterium tuberculosis and belonging to the neprilysin (NEP; M13) family, whose X-ray structure has been recently solved. Interestingly, this enzyme shows an optimum activity toward a fluorogenic substrate at moderately acidic pH values (i.e., 6.3), which corresponds to those reported for the Mtb phagosome where this enzyme should exert its pathological activity. Substrate specificity of Zmp1 was investigated by screening a peptide library. Several sequences derived from biologically relevant proteins were identified as possible substrates, including the neuropeptides bradykinin, neurotensin, and neuropeptide FF. Further, subsequences of other small bioactive peptides were found among most frequently cleaved sites, e.g., apelin-13 and substance P. We determined the specific cleavage site within neuropeptides by mass spectrometry, observing that hydrophobic amino acids, mainly phenylalanine and isoleucine, are overrepresented at position P1'. In addition, the enzymatic mechanism of Zmp1 toward these neuropeptides has been characterized, displaying some differences with respect to the synthetic fluorogenic substrate and indicating that the enzyme adapts its enzymatic action to different substrates.  相似文献   

8.
Inhibition of intrarenal neutral endopeptidase 24:11 (NEP) increases the natriuretic response to infused atrial natriuretic peptide (ANP). In various models of canine heart failure, angiotensin and kinins have been shown to modulate ANP and (or) NEP activity. In the present study, we examined possible modulators of NEP activity in normal dogs by infusing various agents into the left renal artery (or by denervating the left kidney) and comparing the response of this kidney with that of the contralateral one following the combined intravenous infusion of Squibb 28603 (a potent NEP inhibitor) and ANP (75 ng.kg-1.min-1). Four dogs received angiotensin (1.5 ng.kg-1.min-1) into the left renal artery, 8 dogs received saralasin (5 micrograms/min), 5 dogs received noradrenaline (2 micrograms/min), and 6 dogs received bradykinin (3 micrograms/min). Five dogs underwent left renal denervation. Angiotensin inhibited sodium excretion following the NEP inhibitor alone and after the NEP inhibitor plus ANP. Saralasin augmented the natriuretic response. None of the other protocols influenced sodium excretion. We conclude that angiotensin may modulate either the enzymatic degradation of ANP or influence its renal tubular effects.  相似文献   

9.
Increased expression of renal neutral endopeptidase in severe heart failure   总被引:4,自引:0,他引:4  
The enzyme neutral endopeptidase (NEP; EC 3.4.24.11) cleaves several vasoactive peptides such as the atrial natriuretic peptide (ANP). ANP is a hormone of cardiac origin with diuretic and natriuretic actions. Despite elevated circulating levels of ANP, congestive heart failure (CHF) is characterized by progressive sodium and water retention. In order to elucidate the loss of natriuretic and diuretic properties of ANP in CHF we analyzed activity, protein concentrations, mRNA and immunostaining of NEP in kidneys of different models of severe CHF in the rat.CHF was induced by either aortocaval shunt, aortic banding or myocardial infarction in the rat. All models were defined by increased left ventricular end-diastolic pressure and decreased contractility. The diminished effectiveness of ANP was reflected by reduced cGMP/ANP ratio in animals with shunt or infarction.Renal NEP activity was increased in rats with aortocaval shunt (203 +/- 7%, p < 0.001), aortic banding (184 +/- 11%, p < 0.001) and infarction (149 +/- 10%, p < 0.005). Western blot analysis revealed a significant increase in renal NEP protein content in two models of CHF (shunt: 214 +/- 57%, p < 0.05; infarction: 310 +/- 53 %, p < 0.01). The elevated protein expression was paralleled by a threefold increase in renal NEP-mRNA level in the infarction model.The increased renal NEP protein expression and activity may lead to enhanced degradation of ANP and may contribute to the decreased renal response to ANP in heart failure. Thus, the capacity to counteract sodium and water retention, would be diminished. The increased renal NEP activity may therefore be a hitherto unknown factor in the progression of CHF.  相似文献   

10.
We examined the substrate specificity of the carboxydipeptidase activity of neprilysin (NEP) using fluorescence resonance energy transfer (FRET) peptides containing ortho-aminobenzoyl (Abz) and 2,4-dinitrophenyl (Dnp) as a donor/acceptor pair. Two peptide series with general sequences Abz-RXFK(Dnp)-OH and Abz-XRFK(Dnp)-OH (X denotes the position of the altered amino acid) were synthesized to study P1 (cleavage at the X-F bond) and P2 (cleavage at R-F bond) specificity, respectively. In these peptides a Phe residue was fixed in P1' to fulfill the well-known NEP S1' site requirement for a hydrophobic amino acid. In addition, we explored NEP capability to hydrolyze bradykinin (RPPGFSPFR) and its fluorescent derivative Abz-RPPGFSPFRQ-EDDnp (EDDnp=2,4-dinitrophenyl ethylenediamine). The enzyme acts upon bradykinin mainly as a carboxydipeptidase, preferentially cleaving Pro-Phe over the Gly-Phe bond in a 9:1 ratio, whereas Abz-RPPGFSPFRQ-EDDnp was hydrolyzed at the same bonds but at an inverted proportion of 1:9. The results show very efficient interaction of the substrates' C-terminal free carboxyl group with site S2' of NEP, confirming the enzyme's preference to act as carboxydipeptidase at substrates with a free carboxyl-terminus. Using data gathered from our study, we developed sensitive and selective NEP substrates that permit continuous measurement of the enzyme activity, even in crude tissue extracts.  相似文献   

11.
Recent reports presented contradictory results regarding the catabolism of mature atrial (ANP) and brain (BNP) natriuretic peptides in circulation. Especially the role of neutral endopeptidase (NEP) in BNP degradation was conversely discussed. Our present in vitro-studies characterize the NEP-dependent metabolism of ANP and BNP in different tissues via HPLC-analysis using NEP-deficient mice and specific NEP inhibitors. Our results show a strong tissue-dependent degradation pattern of both peptides, which are not only due to the different NEP activities in these tissues. Whereas NEP rapidly degraded ANP, it had no influence in BNP-metabolism. Additional experiments with purified NEP confirmed this result. Moreover, we describe a degradation of ANP and BNP in NEP-deficient- and NEP-inhibited membranes. Consequently, we postulate the existence of at least one further natriuretic peptide (NP) degrading enzyme, which has not been characterized yet. Thus, the commonly accepted model of the natriuretic peptide system with NEP as the central degrading peptidase has to be partly revised. Moreover, the NEP-independent BNP degradation provides an effective means for achieving a beneficial BNP increase in cardiovascular pathology by inhibiting the assumed novel NP-degrading peptidase(s).  相似文献   

12.
Increased arterial endothelial cell permeability (ECP) is considered an initial step in atherosclerosis. Atrial natriuretic peptide (ANP) which is rapidly degraded by neprilysin (NEP) may reduce injury-induced endothelial cell leakiness. Omapatrilat represents a first in class of pharmacological agents which inhibits both NEP and angiotensin converting enzyme (ACE). We hypothesized that ANP prevents thrombin-induced increases of ECP in human aortic ECs (HAECs) and that omapatrilat would reduce aortic leakiness and atherogenesis and enhance ANP mediated vasorelaxation of isolated aortas. Thrombin induced ECP determined by I125 albumin flux was assessed in HAECs with and without ANP pretreatment. Next we examined the effects of chronic oral administration of omapatrilat (12 mg/kg/day, n = 13) or placebo (n = 13) for 8 weeks on aortic leakiness, atherogenesis and ANP-mediated vasorelaxation in isolated aortas in a rabbit model of atherosclerosis produced by high cholesterol diet. In HAECs, thrombin-induced increases in ECP were prevented by ANP. Omapatrilat reduced the area of increased aortic leakiness determined by Evans-blue dye and area of atheroma formation assessed by Oil-Red staining compared to placebo. In isolated arterial rings, omapatrilat enhanced vasorelaxation to ANP compared to placebo with and without the endothelium. ANP prevents thrombin-induced increases in ECP in HAECs. Chronic oral administration of omapatrilat reduces aortic leakiness and atheroma formation with enhanced endothelial independent vasorelaxation to ANP. These studies support the therapeutic potential of dual inhibition of NEP and ACE in the prevention of increased arterial ECP and atherogenesis which may be linked to the ANP/cGMP system.  相似文献   

13.
Neprilysin (NEP, neutral endopeptidase, EC3.4.24.11), a zinc metallopeptidase expressed on the surface of endothelial cells, influences vascular homeostasis primarily through regulated inactivation of natriuretic peptides and bradykinin. Earlier in vivo studies reporting on the anti-atherosclerotic effects of NEP inhibition and on the atheroprotective effects of flow-associated laminar shear stress (LSS) have lead us to hypothesize that the latter hemodynamic stimulus may serve to down-regulate NEP levels within the vascular endothelium. To address this hypothesis, we have undertaken an investigation of the effects of LSS on NEP expression in vitro in bovine aortic endothelial cells (BAECs), coupled with an examination of the signalling mechanism putatively mediating these effects. BAECs were exposed to physiological levels of LSS (10 dynes/cm2, 24 h) and harvested for analysis of NEP expression using real-time PCR, Western blotting, and immunocytochemistry. Relative to unsheared controls, NEP mRNA and protein were substantially down-regulated by LSS (≥50%), events which could be prevented by treatment of BAECs with either N-acetylcysteine, superoxide dismutase, or catalase, implicating reactive oxygen species (ROS) involvement. Employing pharmacological and molecular inhibition strategies, the signal transduction pathway mediating shear-dependent NEP suppression was also examined, and roles implicated for Gβγ, Rac1, and NADPH oxidase activation in these events. Treatment of static BAECs with angiotensin-II, a potent stimulus for NADPH oxidase activation, mimicked the suppressive effects of shear on NEP expression, further supporting a role for NADPH oxidase-dependent ROS production. Interestingly, inhibition of receptor tyrosine kinase signalling had no effect. In conclusion, we confirm for the first time that NEP expression is down-regulated in vascular endothelial cells by physiological laminar shear, possibly via a mechanotransduction mechanism involving NADPH oxidase-induced ROS production.  相似文献   

14.
Endopeptidase 24.15, a metalloendopeptidase (EC 3.4.24.15) with an Mr of about 70,000, was purified to homogeneity from rat testes. The enzyme cleaves preferentially bonds on the carboxyl side of hydrophobic amino acids. Secondary enzyme-substrate interactions at sites removed from the scissile bond are indicated by the finding that a hydrophobic or bulky residue in the P3' position greatly contributes to substrate binding and catalytic efficiency. The isolated enzyme is inhibited by metal chelators and by thiols. Loss of enzymic activity after dialysis against EDTA can be restored by low concentrations of Zn2+ and Co2+ ions. The rate of reaction of the Co2+ enzyme with a synthetic substrate was higher than that of the Zn2+ enzyme. These results are consistent with the classification of the enzyme as a metalloendopeptidase. N-Carboxymethyl peptides that fulfil the binding requirements of the substrate recognition site of the enzyme act as potent competitive inhibitors. Biologically active peptides such as luteinizing hormone-releasing hormone, bradykinin and neurotensin are cleaved at sites consistent with the specificity of the enzyme deduced from studies with synthetic peptides. Dynorphin A (1-8)-peptide, beta-neoendorphin, metorphamide, and Metenkephalin-Arg6-Gly7-Leu8 are rapidly converted to the corresponding enkephalins. The testis enzyme is catalytically and immunologically closely related to the previously identified brain enzyme.  相似文献   

15.
The angiotensin I converting enzyme (kininase II; peptidyl dipeptidase; EC3.4.15.1) has a dual function: it converts angiotensin I to angiotensin II and it inactivates bradykinin. Lung, kidney, guinea pig plasma and testicles are among the richest sources of the enzyme. Vascular endothelial cells and bursh borders of renal proximal tubular cells contain high concentrations of the enzyme. The availability of synthetic peptide inhibitors was a great help in establishing the function of converting enzyme in normal and pathological conditions.  相似文献   

16.
Oligopeptidases are tissue endopeptidases that do not attack proteins and are likely to be involved in the maturation and degradation of peptide hormones and neuropeptides. The rabbit brain endooligopeptidase A and the rat testes soluble metallopeptidase (EC 3.4.24.15) are thiol-activated oligopeptidases which are able to generate enkephalin from a number of opioid peptides and to inactivate bradykinin and neurotensin by hydrolyzing the same peptide bonds. A monospecific antibody raised against the purified rabbit brain endooligopeptidase A allowed the identification of a 2. 3 kb cDNA coding for a truncated enzyme of 512 amino acids, displaying the same enzymatic features as endooligopeptidase A. In spite of all efforts, employing several strategies, the full-length cDNA could not be cloned until now. The analysis of the deduced amino acid sequence showed no similarity to the rat testes metalloendopeptidase sequence, except for the presence of the typical metalloprotease consensus sequence [HEXXH]. The antibody raised against recombinant endooligopeptidase A specifically inhibited its own activity and reduced the thiol-activated oligopeptidase activity of rabbit brain cytosol to less than 30%. Analysis of the endooligopeptidase A tissue distribution indicated that this enzyme is mainly expressed in the CNS, whereas the soluble metallo EC 3.4.24.15 is mainly expressed in peripheral tissues.  相似文献   

17.
M. Benuck  M.J. Berg  N. Marks 《Life sciences》1981,28(23):2643-2650
Peptidyl dipeptidase activity distinct from the angiotensin converting enzyme (EC 3.4.15.1) was isolated from membrane fractions of rabbit kidney and lung. The enzyme cleaved Leu-enkephalin at the Gly-Phe bond, releasing Tyr-Gly-Gly and Phe-Leu, and also acted on bradykinin releasing the terminal dipeptide Phe-Arg. In contrast to the converting enzyme, however, this peptidyl dipeptidase did not act on angiotensin I, or on hippuryl His-Leu, nor was it inhibited by captopril (SQ 14225) or by SQ 20881. Kinetic studies indicated a Km for the kidney enzyme of 80 μM with Leu-enkephalin as a substrate. Our findings indicate that more than one enzyme is present in membrane preparations of lung and kidney inactivating enkephalin, and suggest a role for these enzymes in the peripheral actions of opiate and related peptides.  相似文献   

18.
Atrial natriuretic peptide (ANP) is a fluid-regulating peptide hormone that promotes vasorelaxation, natriuresis, and diuresis. The mechanisms for the release of ANP and for its clearance from the circulation play important roles in modulating its biological effects. Recently, we have reported that the cell surface of an endothelial cell line, CPA47, could degrade 125I-ANP in the presence of EDTA. In this study, we have characterized this degradation of 125I-ANP. The kinetics of ANP degradation by the surface of CPA47 cells were first order, with a Km of 320 ± 60 nM and Vmax of 35 ± 14 pmol of ANP degraded/10 min/105 cells at pH 7.4. ANP is degraded by the surface of CPA47 cells over a broad pH range from 7.0–8.5. Potato carboxypeptidase inhibitor and bestatin inhibited 125I-ANP degradation, suggesting that this degradative activity on the surface of CPA47 cells has exopeptidase characteristics. The selectivity of CPA47 cell-surface degradation of ANP was demonstrated when 125I-ANP degradation was inhibited in the presence of neuropeptide Y and angiotensin I and II but not bradykinin, bombesin, endothelin-1, or substance P. The C-terminal amino acids phe26 and tyr28 were deduced to be important for ANP interaction with the cell-surface peptidase(s) based on comparison of the IC50 of various ANP analogues and other natriuretic peptides for the inhibition of ANP degradation. These data suggest that a newly characterized divalent cation-independent exopeptidase(s) that selectively recognizes ANP and some other vasoactive peptides exists on the surface of endothelial cells.  相似文献   

19.
Aminopeptidase A (APA) is a type II membrane-bound protein implicated in the regulation of blood pressure in the brain renin-angiotensin system. In this study, a recombinant soluble form of APA was expressed in a baculovirus system, purified to homogeneity, and characterized. By using synthetic substrates, it was shown that although the enzyme has a rather broad substrate specificity in the absence of Ca2+, the preferential release of acidic amino acid residues was observed in the presence of Ca2+. Moreover, Ca2+ up- or down-regulated the enzymatic activity depending on the substrate. By searching for natural substrates of APA, we found that peptides having acidic amino acids at their N terminus (angiotensin II, neurokinin B, cholecystokinin-8, and chromogranin A) were cleaved by the enzyme efficiently in the presence but not in the absence of Ca2+. Moreover kallidin (Lys-bradykinin) was converted to bradykinin effectively only in the absence of Ca2+. These results suggest that Ca2+ increases the preference of the enzyme for the peptide substrates having N-terminal acidic amino acids. In addition, we found that angiotensin IV could bind to APA both in the presence and absence of Ca2+ and inhibited the enzymatic activity of APA competitively, suggesting that angiotensin IV acts as a negative regulator of the enzyme once generated from angiotensin II by the serial actions of aminopeptidases. Taken together, these results suggest that there exists a complex regulation of the enzymatic activity of APA, which may contribute to homeostasis such as regulation of blood pressure, maintenance of memory, and normal pregnancy by controlling the concentrations of peptide substrates.  相似文献   

20.
We have used a retroviral vector containing both the cDNA for rabbit neutral endopeptidase (EC 3.4.24.11; NEP) and the neomycin resistance gene to promote the expression of NEP in a polarized Madin-Darby canine kidney (MDCK) cell line. Cells resistant to G418 (a neomycin synthetic analog) were analyzed with a fluorescence-activated cell sorter to isolate a homogeneous population of cells which stably expressed NEP at their surface. When cells grown in Petri dishes were labeled with an antibody to NEP coupled to colloidal gold and examined under the electron microscope, a strong labeling of microvilli was observed, whereas very few particles were present on the basolateral domain, suggesting that the polarized distribution of this enzyme typical of proximal tubule cells is maintained in this MDCK cell population. To study more accurately the mechanism by which MDCK cells target NEP to the apical surface, cultures were grown to confluence on Costar Transwell chambers and used for pulse-chase experiments with [35S]methionine. Immunoprecipitation of recombinant NEP was then performed by adding an anti-NEP polyclonal antibody to the apical or basolateral surface of intact monolayers and by analyzing immunoprecipitates by gel electrophoresis and fluorography. Our results suggest that NEP is delivered directly to the apical domain and does not transit through the basolateral domain of the plasma membrane. This NEP-expressing MDCK cell line therefore constitutes a new model for investigating the molecular basis of apical membrane targeting in polarized epithelial cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号