首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
This study examined the use of affinity microcolumns as tools for the rapid analysis and high-throughput screening of drug–protein binding. The protein used was immobilized human serum albumin (HSA) and the model analytes were warfarin and l-tryptophan, two solutes often used as site-specific probes for drug binding to Sudlow sites I and II of HSA, respectively. The use of HSA microcolumns in binding studies was examined by using both zonal elution and frontal analysis formats. The zonal elution studies were conducted by injecting the probe compounds onto HSA microcolumns of varying lengths while measuring the resulting retention factors, plate heights and peak asymmetries. A decrease in the retention factor was noted when moving from longer to shorter column lengths while using a constant amount of injected solute. However, this change could be corrected, in part, by determining the relative retention factor of a solute versus a reference compound injected onto the same microcolumn. The plate height values were relatively consistent for all column lengths and gave an expected increase at higher linear velocities. The peak asymmetries were similar for all columns up to 1 mL/min but shifted to larger values at higher flow rates and when using short microcolumns (e.g., 1 mm length). The association equilibrium constants and number of binding sites estimated by frontal analysis for warfarin with HSA were consistent at the various column sizes that were tested and gave good agreement with previous literature values. These results confirmed affinity microcolumns provide comparable results to those obtained with longer columns and can be used in the rapid analysis of drug–protein binding and in the high-throughput screening of such interactions.  相似文献   

2.
Acetohexamide is a drug used to treat type II diabetes and is tightly bound to the protein human serum albumin (HSA) in the circulation. It has been proposed that the binding of some drugs with HSA can be affected by the non-enzymatic glycation of this protein. This study used high-performance affinity chromatography to examine the changes in acetohexamide–HSA binding that take place as the glycation of HSA is increased. It was found in frontal analysis experiments that the binding of acetohexamide to glycated HSA could be described by a two-site model involving both strong and weak affinity interactions. The average association equilibrium constant (Ka) for the high affinity interactions was in the range of 1.2–2.0 × 105 M−1 and increased in moving from normal HSA to HSA with glycation levels that might be found in advanced diabetes. It was found through competition studies that acetohexamide was binding at both Sudlow sites I and II on the glycated HSA. The Ka for acetohexamide at Sudlow site I increased by 40% in going from normal HSA to minimally glycated HSA but then decreased back to near-normal values in going to more highly glycated HSA. At Sudlow site II, the Ka for acetohexamide first decreased by about 40% and then increased in going from normal HSA to minimally glycated HSA and more highly glycated HSA. This information demonstrates the importance of conducting both frontal analysis and site-specific binding studies in examining the effects of glycation on the interactions of a drug with HSA.  相似文献   

3.
Kinetics of fatty acid binding ability of glycated human serum albumin (HSA) were investigated by fluorescent displacement technique with 1-anilino-8-naphtharene sulphonic acid (ANS method), and photometric detection of nonesterified-fatty-acid (NEFA method). Changing of binding affinities of glycated HSA toward oleic acid, linoleic acid, lauric acid, and caproic acid, were not observed by the ANS method. However, decreases of binding capacities after 55 days glycation were confirmed by the NEFA method in comparison to control HSA. The decrease in binding affinities was: oleic acid (84%), linoleic acid (84%), lauric acid (87%), and caproic acid (90%), respectively. The decreases were consistent with decrease of the intact lysine residues in glycated HSA. The present observation indicates that HSA promptly loses its binding ability to fatty acid as soon as the lysine residues at fatty acid binding sites are glycated.  相似文献   

4.
Human serum albumin (HSA) is an abundant transport protein found in plasma that binds a wide variety of drugs in two primary binding sites (I and II) and can have a significant impact on their pharmacokinetics. We have determined the crystal structures at 2.5 A-resolution of HSA-myristate complexed with the R-(+) and S-(-) enantiomers of warfarin, a widely used anticoagulant that binds to the protein with high affinity. The structures confirm that warfarin binds to drug site I (in subdomain IIA) in the presence of fatty acids and reveal the molecular details of the protein-drug interaction. The two enantiomers of warfarin adopt very similar conformations when bound to the protein and make many of the same specific contacts with amino acid side chains at the binding site, thus accounting for the relative lack of stereospecificity of the HSA-warfarin interaction. The conformation of the warfarin binding pocket is significantly altered upon binding of fatty acids, and this can explain the observed enhancement of warfarin binding to HSA at low levels of fatty acid.  相似文献   

5.
Human serum albumin (HSA) is one of the most abundant proteins in the circulatory system and plays a key role in the transport of fatty acids, metabolites, and drugs. For many drugs, binding to serum albumin is a critical determinant of their distribution and pharmacokinetics; however, there have as yet been no high resolution crystal structures published of drug-albumin complexes. Here we describe high resolution crystal structures of HSA with two of the most widely used general anesthetics, propofol and halothane. In addition, we describe a crystal structure of HSA complexed with both halothane and the fatty acid, myristate. We show that the intravenous anesthetic propofol binds at two discrete sites on HSA in preformed pockets that have been shown to accommodate fatty acids. Similarly we show that the inhalational agent halothane binds (at concentrations in the pharmacologically relevant range) at three sites that are also fatty acid binding loci. At much higher halothane concentrations, we have identified additional sites that are occupied. All of the higher affinity anesthetic binding sites are amphiphilic in nature, with both polar and apolar parts, and anesthetic binding causes only minor changes in local structure.  相似文献   

6.
Electronic circular dichroism (ECD), absorption and fluorescence spectroscopy were used to study the enantioselective interactions which involved bilirubin (BR), liposomes, human serum albumin of two different purities, pure (HSA) and non-purified of fatty acids (FA-HSA), and individual fatty acids.The application of the ECD technique to such a complex problem provided a new perspective on the BR binding to liposomes. Our results demonstrated that in the presence of pure HSA, BR preferred to bind to the protein over the liposomes. However, in the presence of FA-HSA, BR significantly bound to the liposomes composed either of DMPC or of sphingomyelin and bound only moderately to the primary and secondary binding sites of FA-HSA even at high BR concentrations. For the DMPC liposomes, even a change of BR conformation upon binding to the primary binding site was observed. The individual saturated fatty acids influenced the BR binding to HSA and liposomes in a similar way as fatty acids from FA-HSA. The unsaturated fatty acids interacted with BR alone and prevented it from interacting with either 99-HSA or the liposomes. In the presence of arachidonic acid, BR interacted enantioselectively with the liposomes and only moderately with 99-HSA.Hence, our results show a substantial impact of the liposomes on the BR binding to HSA. As a consequence of the existence of fatty acids in the blood plasma and in the natural structure of HSA, BR may possibly bind to the cell membranes even though it is normally bound to HSA.  相似文献   

7.
8.
Gao HW  Xu Q  Chen L  Wang SL  Wang Y  Wu LL  Yuan Y 《Biophysical journal》2008,94(3):906-917
Using various methods, e.g., spectrophotometry, circular dichroism, and isothermal titration calorimetry, the interaction of poncean S (PS) with human serum albumin (HSA) was characterized at pH 1.81, 3.56, and 7.40 using the spectral correction technique, and Langmuir and Temkin isothermal models. The consistency among results concerning, e.g., binding number, binding energy, and type of binding, showed that ion pair electrostatic attraction fixed the position of PS in HSA and subsequently induced a combination of multiple noncovalent bonds such as H-bonds, hydrophobic interactions, and van der Waals forces. Ion pair attraction and H-bonds produced a stable PS-HSA complex and led to a marked change in the secondary structure of HSA in acidic media. The PS-HSA binding pattern and the process of change in HSA conformation were also investigated. The potentially toxic effect of PS on the transport function of HSA in a normal physiological environment was analyzed. This work provides a useful experimental strategy for studying the interaction of organic substances with biomacromolecules, helping us to understand the activity or mechanism of toxicity of an organic compound.  相似文献   

9.
Epidemiologic studies have shown an inverse relationship between human serum albumin (HSA) levels and coronary heart disease (CHD). However, no mechanisms have been identified to explain this relationship. We hypothesized that this relationship is due to differences in binding affinity of fatty acids to HSA and subsequent atherogenic lipoprotein synthesis and secretion from hepatocytes. To test our hypothesis we undertook the current study. Using HepG2 cells, we demonstrated that oleic acid (OA) bound to HSA in a molar ratio of 4:1 and after incubation for 24 h stimulated apolipoprotein B (apoB) secretion. We also tested whether mutant forms of HSA could alter the binding affinity for fatty acids and change the availability of substrate for lipoprotein secretion. Based on the results obtained in this study using 11 HSA mutant proteins complexed with OA, we were able to classify into three major mutant groups based on their effects on apoB secretion. One group in particular (R410Q/Y411W, R410A/Y411A, and W214L/Y411W) showed a significantly diminished effect on apoB secretion when compared to the wild type HSA/OA complex. Furthermore, the amount of free OA internalized in HepG2 cells in the presence of HSA mutant proteins was in good agreement with the effects seen on apoB secretion by the various HSA mutants. This suggests that some mutant forms of HSA might potentially bind fatty acids with a much higher binding affinity and thus deprive fatty acids available for lipoprotein assembly in hepatocytes. In conclusion, our data illustrate that certain HSA polymorphic forms may be protective against the development of CHD and warrants further investigation.  相似文献   

10.
The interaction of proteins with glucose results in their non-enzymatic glycation and influences their structural and functional properties. Human serum albumin (HSA) interacts with glucose forming glycated HSA. However, the glucose binding sites and the thermodynamic characteristics of the glycated HSA require further delineation. Here, the binding properties of HSA and glucose were studied utilizing fluorescent techniques. HSA was incubated with glucose in the 0-300mM range at 27 or 37 degrees C. The interaction of HSA with glucose showed two sets of binding sites. The first set consists of two sites with positive cooperativity and the second set consists of nine identical non-cooperative sites. The percentage of glycated HSA (gly%) and the moles of glucose bound to moles of HSA (r) were utilized to obtain binding constants and thermodynamic parameters based on the Wyman binding potential. The enthalpy of binding, obtained by van't Hoff relation, presented exothermicity up to 7mM glucose (126mg/dl, normal range) and endothermic propensity at higher glucose concentrations (>7mM, diabetic range). The start of endothermic propensity was consistent with the diabetic range of glucose concentration and indicates unfolding of HSA. The Gibbs free energy and entropy of binding further supports the unfolding of HSA. Therefore, glucose interacts with multiple sites on HSA affecting its biochemical and biophysical properties. This may interfere with HSA normal function contributing to diabetic complications.  相似文献   

11.
The tetrahydrochloride salt of astaxanthin di-L-lysinate (lys(2)AST) is a highly water-dispersible astaxanthin-amino acid conjugate, with an aqueous dispersibility of > or = 181.6 mg/mL. The statistical mixture of stereoisomers has been well characterized as an aqueous-phase superoxide anion scavenger, effective at micromolar (microM) concentrations. In the current study, the aqueous aggregation behavior and in vitro plasma protein binding [with fatty-acid-free human serum albumin (HSA) and alpha(1)-acid glycoprotein (AGP)] were investigated with a suite of techniques, including circular dichroism (CD) and UV-vis spectroscopy, ultrafiltration, competitive ligand displacement, and fluorescence quenching. Induced CD bands obtained in Ringer buffer solution of HSA demonstrated high affinity monomeric binding of the compound at low ligand per protein (L/P) ratios (in aqueous solution alone the carotenoid molecules formed card-pack aggregates). The binding constant ( approximately 10(6)M(-1)) and the binding stoichiometry (approximately 0.2 per albumin molecule) were calculated from CD titration data. CD displacement and ultrafiltration experiments performed with marker ligands of HSA indicated that the ligand binding occurred at a site distinct from the main drug binding sites of HSA (i.e., Sites I and II). At intermediate L/P ratios, both monomeric and aggregated ("chirally complexed") binding occurred simultaneously at distinct sites of the protein. At high L/P ratios, chiral complexation predominantly occurred on the asymmetric protein template. The tentative location of the chirally-complexed aggregation on the HSA template was identified as the large interdomain cleft of HSA, where carotenoid derivatives have been found to bind previously. Only weak binding to AGP was observed. These results suggest that parenteral use of this highly potent, water-dispersible astaxanthin-amino acid conjugate will result in plasma protein association, and plasma protein binding at sites unlikely to displace fatty acids and drugs bound at well-characterized binding sites on the albumin molecule.  相似文献   

12.
Human serum albumin (HSA) is best known for its extraordinary ligand binding capacity. HSA has a high affinity for heme and is responsible for the transport of medium and long chain fatty acids. Here, we report myristate binding to the N and B conformational states of Mn(III)heme-HSA (i.e. at pH 7.0 and 10.0, respectively) as investigated by optical absorbance and NMR spectroscopy. At pH 7.0, Mn(III)heme binds to HSA with lower affinity than Fe(III)heme, and displays a water molecule coordinated to the metal. Myristate binding to a secondary site FAx, allosterically coupled to the heme site, not only increases optical absorbance of Mn(III)heme-bound HSA by a factor of approximately three, but also increases the Mn(III)heme affinity for the fatty acid binding site FA1 by 10-500-fold. Cooperative binding appears to occur at FAx and accessory myristate binding sites. The conformational changes of the Mn(III)heme-HSA tertiary structure allosterically induced by myristate are associated with a noticeable change in both optical absorbance and NMR spectroscopic properties of Mn(III)heme-HSA, allowing the Mn(III)-coordinated water molecule to exchange with the solvent bulk. At pH = 10.0 both myristate affinity for FAx and allosteric modulation of FA1 are reduced, whereas cooperation of accessory sites and FAx is almost unaffected. Moreover, Mn(III)heme binds to HSA with higher affinity than at pH 7.0 even in the absence of myristate, and the metal-coordinated water molecule is displaced. As a whole, these results suggest that FA binding promotes conformational changes reminiscent of N to B state HSA transition, and appear of general significance for a deeper understanding of the allosteric modulation of ligand binding properties of HSA.  相似文献   

13.
14.
This study used a combination of zonal elution and frontal affinity chromatography on immobilized human serum albumin (HSA) high-performance affinity chromatography (HPAC) column to examine the association constants of various compounds that have been studied by equilibrium dialysis or ultra filtration. A standard plot was generated from retention factors of reference compounds using zonal elution chromatography against association constants of reference compounds using frontal affinity chromatography. The linear relationship was established (r2=0.9993) between retention factors and association constants of reference compounds. This standard plot was later used for rapid determination of association constants of various drugs which show low to medium binding affinity to HSA. Association constants of those drugs from this study were compared to that of more generally used methods (i.e., equilibrium dialysis or ultra filtration) from literature and resulted in a relatively high correlation (r2=0.945) value. This combination of zonal elution and frontal affinity chromatography method for determining association constants showed several advantages against traditional methods. Depending on drugs of interest, an association constant of drug to HSA can be measured as fast as 1.5 min. Other notable advantages include an ease of automation and its ability to distinguish association constants of chiral compounds at the same time. The same approach could be used for studying interaction of other drugs and proteins and should further improve overall drug screening process.  相似文献   

15.
An NMR method was developed for determining binding sites of small molecules on human serum albumin (HSA) by competitive displacement of (13)C-labeled oleic acid. This method is based on the observation that in the crystal structure of HSA complexed with oleic acid, two principal drug-binding sites, Sudlow's sites I (warfarin) and II (ibuprofen), are also occupied by fatty acids. In two-dimensional [(1)H,(13)C]heteronuclear single quantum coherence NMR spectra, seven distinct resonances were observed for the (13)C-methyl-labeled oleic acid as a result of its binding to HSA. Resonances corresponding to the major drug-binding sites were identified through competitive displacement of molecules that bind specifically to each site. Thus, binding of molecules to these sites can be followed by their displacement of oleic acids. Furthermore, the amount of bound ligand at each site can be determined from changes in resonance intensities. For molecules containing fluorine, binding results were further validated by direct observations of the bound ligands using (19)F NMR. Identifying the binding sites for drug molecules on HSA can aid in determining the structure-activity relationship of albumin binding and assist in the design of molecules with altered albumin binding.  相似文献   

16.
Fujiwara S  Amisaki T 《Proteins》2006,64(3):730-739
Human serum albumin (HSA) binds with fatty acids under normal physiologic conditions. To date, there is little published information on the tertiary structure of HSA-fatty acid complex in aqueous solution. In the present study, we used molecular dynamics (MD) simulations to elucidate possible structural changes of HSA brought about by the binding of fatty acids. Both unliganded HSA and HSA-fatty acid complex models for MD calculations were constructed based on the X-ray crystal structures. Five myristates (MYRs) were bound in the HSA-fatty acid complex model. In the present MD study, the motion of domains I and III caused by the binding of MYR molecules increased the radius of gyration of HSA. Root-mean-square fluctuations from the MD simulations revealed that the atomic fluctuations of the specific amino acids at drug-binding site I that can regulate the drug-binding affinity were increased by the binding of MYR molecules. Primary internal motions, characterized by the first three principal components, were observed mainly at domains I and III in the principal component analysis for trajectory data. The directional motion projected on the first principal component of unliganded HSA was conserved in HSA-MYR complex as the third principal directional motion with higher frequency. However, the third principal directional motion in unliganded HSA turned into the first principal directional motion with lower frequency in the HSA-MYR complex. Thus, the present MD study provides insights into the possible conformational changes of HSA caused by the binding of fatty acids.  相似文献   

17.
Structural basis of the drug-binding specificity of human serum albumin   总被引:8,自引:0,他引:8  
Human serum albumin (HSA) is an abundant plasma protein that binds a remarkably wide range of drugs, thereby restricting their free, active concentrations. The problem of overcoming the binding affinity of lead compounds for HSA represents a major challenge in drug development. Crystallographic analysis of 17 different complexes of HSA with a wide variety of drugs and small-molecule toxins reveals the precise architecture of the two primary drug-binding sites on the protein, identifying residues that are key determinants of binding specificity and illuminating the capacity of both pockets for flexible accommodation. Numerous secondary binding sites for drugs distributed across the protein have also been identified. The binding of fatty acids, the primary physiological ligand for the protein, is shown to alter the polarity and increase the volume of drug site 1. These results clarify the interpretation of accumulated drug binding data and provide a valuable template for design efforts to modulate the interaction with HSA.  相似文献   

18.
Human serum albumin (HSA) is the most abundant protein in plasma. It is known to transport drugs as well as endogenous ligands, like free fatty acids (FFA). A mass spectrometry based method was applied to analyze the albumin bound lipid ligands. HSA was isolated from a human plasma pool by cold ethanol fractionation and ion exchange chromatography. HSA was defatted using a solvent extraction method to release the copurified lipids bound to the protein. The extracts were then analyzed by matrix-assisted laser desorption ionisation (MALDI) mass spectrometry (MS). Using this method, phospholipids and acylglycerols were detected. The phospholipids were identified to be lyso-phosphatidylcholine (lyso-PC) with distribution of different fatty acids (palmitic, stearic, oleic, and linoleic acids). An abundant species in the HSA lipid extract was found to be a diacylglycerol, composed of two linoleic and/or oleic acid chains. The identified motifs reflect structures that are known to be present in plasma. The binding of lysophospholipids has already been described but it is the first ever-reported evidence of native diacylglycerol ligands bound to HSA. Besides the native ligands from plasma a triacylglycerol was detected that has been added during the albumin preparation steps.  相似文献   

19.
We have used differential scanning calorimetry (DSC) to determine the unfolding properties of commercial products of human serum albumin (HSA) prepared from pooled human blood, transgenic yeast, and transgenic rice. The initial melting temperatures (Tm1) for the unfolding transitions of the HSA products varied from 62°C to 75°C. We characterized the samples for purity, fatty acid content, and molecular weight. The effects of adding fatty acids, heat pasteurization, and a low pH defatting technique on the transition temperatures were measured. Defatted HSA has a structure with the lowest stability (Tm of ~62°C). When fatty acids are bound to HSA, the structure is stabilized (Tm of ~64–72°C), and prolonged heating (pasteurization at 60°C) results in a heat‐stabilized structural form containing fatty acids (Tm of ~75–80°C). This process was shown to be reversible by a low pH defatting step. This study shows that the fatty acid composition and bioprocessing history of the HSA commercial products results in the large differences in the thermal stability. © 2014 American Institute of Chemical Engineers Biotechnol. Prog., 31:62–69, 2015  相似文献   

20.
Human serum albumin (HSA) is an abundant plasma protein that is responsible for the transport of fatty acids. HSA also binds and perturbs the pharmacokinetics of a wide range of drug compounds. Binding studies have revealed significant interactions between fatty acid and drug-binding sites on albumin but high-resolution structural information on ligand binding to the protein has been lacking. We report here a crystallographic study of five HSA-fatty acid complexes formed using saturated medium-chain and long-chain fatty acids (C10:0, C12:0, C14:0, C16:0 and C18:0). A total of seven binding sites that are occupied by all medium-chain and long-chain fatty acids have been identified, although medium-chain fatty acids are found to bind at additional sites on the protein, yielding a total of 11 distinct binding locations. Comparison of the different complexes reveals key similarities and significant differences in the modes of binding, and serves to rationalise much of the biochemical data on fatty acid interactions with albumin. The two principal drug-binding sites, in sub-domains IIA and IIIA, are observed to be occupied by fatty acids and one of them (in IIIA) appears to coincide with a high-affinity long-chain fatty acid binding site.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号