首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Non-synonymous single nucleotide polymorphisms (nsSNPs) are considered as biomarkers to disease susceptibility. In the present study, nsSNPs in CLU, PICALM and BIN1 genes were screened for their functional impact on concerned proteins and their plausible role in Alzheimer disease (AD) susceptibility. Initially, SNPs were retrieved from dbSNP database, followed by identification of potentially deleterious nsSNPs and prediction of their effect on proteins by PolyPhen and SIFT. Protein stability and the probability of mutation occurrence were predicted using I-Mutant and PANTHER respectively. SNPs3D and FASTSNP were used for the functional analysis of nsSNPs. The functional impact on the 3D structure of proteins was evaluated by SWISSPDB viewer and NOMAD-Ref server. On analysis, 3 nsSNPs with IDs rs12800974 (T158P) of PICALM and rs11554585 (R397C) and rs11554585 (N106D) of BIN1 were predicted to be functionally significant with higher scores of I-Mutant, SIFT, PolyPhen, PANTHER, FASTSNP and SNPs3D. The mutant models of these nsSNPs also showed very high energies and RMSD values compared to their native structures. Current study proposes that the three nsSNPs identified in this study constitute a unique resource of potential genetic factors for AD susceptibility.  相似文献   

2.
Hsiao TL  Vitkup D 《PLoS genetics》2008,4(3):e1000014
It is now widely recognized that robustness is an inherent property of biological systems [1],[2],[3]. The contribution of close sequence homologs to genetic robustness against null mutations has been previously demonstrated in simple organisms [4],[5]. In this paper we investigate in detail the contribution of gene duplicates to back-up against deleterious human mutations. Our analysis demonstrates that the functional compensation by close homologs may play an important role in human genetic disease. Genes with a 90% sequence identity homolog are about 3 times less likely to harbor known disease mutations compared to genes with remote homologs. Moreover, close duplicates affect the phenotypic consequences of deleterious mutations by making a decrease in life expectancy significantly less likely. We also demonstrate that similarity of expression profiles across tissues significantly increases the likelihood of functional compensation by homologs.  相似文献   

3.
Subramanian S 《Genetics》2012,190(4):1579-1583
Here I show a gradual decline in the proportion of deleterious nonsynonymous SNPs (nSNPs) from tip to root of the human population tree. This study reveals that up to 48% of nSNPs specific to a single genome are deleterious in nature, which underscores the abundance of deleterious polymorphisms in humans.  相似文献   

4.
Hunter disease, an X-linked recessive lethal, has recently been observed to occur in high frequency in Israeli Jews as compared with other Caucasian populations. Using the equilibrium distribution of the number of affected males, one can computed the probability that the excess frequency is due to genetic drift. Our results demonstrate that the elevated frequency of Hunter disease is compatible with drift.  相似文献   

5.
Deleterious mutations affecting biological function of proteins are constantly being rejected by purifying selection from the gene pool. The non-synonymous/synonymous substitution rate ratio (omega) is a measure of selective pressure on amino acid replacement mutations for protein-coding genes. Different methods have been developed in order to predict non-synonymous changes affecting gene function. However, none has considered the estimation of selective constraints acting on protein residues. Here, we have used codon-based maximum likelihood models in order to estimate the selective pressures on the individual amino acid residues of a well-known model protein: p53. We demonstrate that the number of residues under strong purifying selection in p53 is much higher than those that are strictly conserved during the evolution of the species. In agreement with theoretical expectations, residues that have been noted to be of structural relevance, or in direct association with DNA, were among those showing the highest signals of purifying selection. Conversely, those changing according to a neutral, or nearly neutral mode of evolution, were observed to be irrelevant for protein function. Finally, using more than 40 human disease genes, we demonstrate that residues evolving under strong selective pressures (omega<0.1) are significantly associated (p<0.01) with human disease. We hypothesize that non-synonymous change on amino acids showing omega<0.1 will most likely affect protein function. The application of this evolutionary prediction at a genomic scale will provide an a priori hypothesis of the phenotypic effect of non-synonymous coding single nucleotide polymorphisms (SNPs) in the human genome.  相似文献   

6.
MOTIVATION: Contemporary, high-throughput sequencing efforts have identified a rich source of naturally occurring single nucleotide polymorphisms (SNPs), a subset of which occur in the coding region of genes and result in a change in the encoded amino acid sequence (non-synonymous coding SNPs or 'nsSNPs'). It is hypothesized that a subset of these nsSNPs may underlie common human disease. Testing all these polymorphisms for disease association would be time consuming and expensive. Thus, computational methods have been developed to both prioritize candidate nsSNPs and make sense of their likely molecular physiologic impact. RESULTS: We have developed a method to prioritize nsSNPs and have applied it to the human protein kinase gene family. The results of our analyses provide high quality predictions and outperform available whole genome prediction methods (74% versus 83% prediction accuracy). Our analyses and methods consider both DNA sequence conservation, which most traditional methods are based on, as well unique structural and functional features of kinases. We provide a ranked list of common kinase nsSNPs that have a higher probability of impacting human disease based on our analyses.  相似文献   

7.
8.
Hughes AL 《Genetics》2005,169(2):533-538
The nearly neutral theory of molecular evolution predicts that slightly deleterious mutations subject to purifying selection are widespread in natural populations, particularly those of large effective population size. To test this hypothesis, the standardized difference between pairwise nucleotide difference and number of segregation sites (corrected for number of sequences) was estimated for 149 population data sets from 84 species of bacteria. This quantity (Tajima's D-statistic) was estimated separately for synonymous (D(syn)) and nonsynonymous (D(non)) polymorphisms. D(syn) was positive in 70% of data sets, and the overall median D(syn) (0.873) was positive. By contrast D(non) was negative in 68% of data sets, and the overall median D(non) (-0.656) was negative. The preponderance of negative values of D(non) is evidence that there are widespread rare nonsynonymous polymorphisms in the process of being eliminated by purifying selection, as predicted to occur in populations with large effective size by the nearly neutral theory. The major exceptions to this trend were seen among surface proteins, particularly those of bacteria parasitic on vertebrates, which included a number of cases of polymorphisms apparently maintained by balancing selection.  相似文献   

9.
The founder effect and deleterious genes   总被引:1,自引:0,他引:1  
During the rapid growth of a population from a few founders, a single deleterious gene in a founder can attain an appreciable frequency in later generations. A computer simulation, which has the population double itself in early generations, indicates a lethal could attain a frequency of 0.1. Since deleterious recessive genes are eliminated from large populations at a very slow rate, variations in their frequencies in present major human populations may be due to the founder effect during earlier rapid expansion.  相似文献   

10.
11.
Extinction time of deleterious mutant genes in large populations   总被引:6,自引:0,他引:6  
  相似文献   

12.

Background  

As the number of non-synonymous single nucleotide polymorphisms (nsSNPs), also known as single amino acid polymorphisms (SAPs), increases rapidly, computational methods that can distinguish disease-causing SAPs from neutral SAPs are needed. Many methods have been developed to distinguish disease-causing SAPs based on both structural and sequence features of the mutation point. One limitation of these methods is that they are not applicable to the cases where protein structures are not available. In this study, we explore the feasibility of classifying SAPs into disease-causing and neutral mutations using only information derived from protein sequence.  相似文献   

13.
14.
Single amino acid polymorphisms (SAPs), also known as non-synonymous single nucleotide polymorphisms (nsSNPs), are responsible for most of human genetic diseases. Discriminate the deleterious SAPs from neutral ones can help identify the disease genes and understand the mechanism of diseases. In this work, a method of deleterious SAP prediction at system level was established. Unlike most existing methods, our method not only considers the sequence and structure information, but also the network information. The integration of network information can improve the performance of deleterious SAP prediction. To make our method available to the public, we developed SySAP (a System-level predictor of deleterious Single Amino acid Polymorphisms), an easy-to-use and high accurate web server. SySAP is freely available at http://www.biosino.org/SySAP/and http://lifecenter.sgst.cn/SySAP/.  相似文献   

15.
Abstract

Mutation in two genes deglycase gene (DJ-1) and retromer complex component gene (VPS35) are linked with neurodegenerative disorder such as Parkinson's disease, Huntington's disease, and Alzheimer's disease. DJ-1 gene located at 1p36 chromosomal position and involved in PD pathogenesis through many pathways including mitochondrial dysfunction and oxidative injury. VPS35 gene located at 16q13-q21 chromosomal position and the two pathways, the Wnt signaling pathway, and retromer-mediated DMT1 missorting are proposed for basis of VPS35 related PD. The study focuses on identifying most deleterious SNPs through computational analysis. Result obtained from various bioinformatics tools shows that D149A is most deleterious in DJ-1 and A54W, R365H, and V717M are most deleterious in VPS35. To understand the functionality of protein comparative modeling of DJ-1 and VPS35 native and mutants was done by MODELLER. The generated structures are validated by two web servers–ProSa and RAMPAGE. Molecular dynamic simulation (MDS) analysis done for the most validated structures to know the functional and structural nature of native and mutants protein of DJ-1 and VPS35. Native structure of DJ-1 and VPS35 show more flexibility through MDS analysis. DJ-1 D149A mutant structures become more compact which shows the structural perturbation and loss of DJ-1 protein function which in turn are probable cause for PD. A54W, R365H, and V717M mutant protein of VPS35 also shows compactness which cause structure perturbation and absence of retromer function which likely to be linked to PD pathogenesis. This in silico study may provide a new insight for fundamental molecular mechanism involved in Parkinson’s disease.

Communicated by Ramaswamy H. Sarma  相似文献   

16.
Ultraconserved elements in the human genome likely harbor important biological functions as they are dosage sensitive and are able to direct tissue-specific expression. Because they are under purifying selection, variants in these elements may have a lower frequency in the population but a higher likelihood of association with complex traits. We tested a set of highly constrained SNPs (hcSNPs) distributed genome-wide among ultraconserved and nearly ultraconserved elements for association with seven traits related to reproductive (age at natural menopause, number of children, age at first child, and age at last child) and overall [longevity, body mass index (BMI), and height] fitness. Using up to 24,047 European-American samples from the National Heart, Lung, and Blood Institute Candidate Gene Association Resource (CARe), we observed an excess of associations with BMI and height. In an independent replication panel the most strongly associated SNPs showed an 8.4-fold enrichment of associations at the nominal level, including three variants in previously identified loci and one in a locus (DENND1A) previously shown to be associated with polycystic ovary syndrome. Finally, using 1430 family trios, we showed that the transmissions from heterozygous parents to offspring of the derived alleles of rare (frequency ≤0.5%) hcSNPs are not biased, particularly after adjusting for the rates of genotype missingness and error in the data. The lack of transmission bias ruled out an immediately and strongly deleterious effect due to the rare derived alleles, consistent with the observation that mice homozygous for the deletion of ultraconserved elements showed no overt phenotype. Our study also illustrated the importance of carefully modeling potential technical confounders when analyzing genotype data of rare variants.  相似文献   

17.
In a large population of constant size, there is a unique equilibrium distribution for every deleterious autosomal dominant or deleterious X-linked gene. The purpose of this paper is to determine the mean vector and covariance matrix for such an equilibrium distribution. The theory of branching processes with immigration provides the framework for our investigation. Autosomal dominants can be treated using single-type branching processes; X-linked genes, using two-type branching processes. Application is made to Huntington's chorea and Becker's muscular dystrophy.  相似文献   

18.
19.
20.
We have developed two methods of identifying which non-synonomous single base changes have a deleterious effect on protein function in vivo. One method, described elsewhere, analyzes the effect of the resulting amino acid change on protein stability, utilizing structural information. The other method, introduced here, makes use of the conservation and type of residues observed at a base change position within a protein family. A machine learning technique, the support vector machine, is trained on single amino acid changes that cause monogenic disease, with a control set of amino acid changes fixed between species. Both methods are used to identify deleterious single nucleotide polymorphisms (SNPs) in the human population. After carefully controlling for errors, we find that approximately one quarter of known non-synonymous SNPs are deleterious by these criteria, providing a set of possible contributors to human complex disease traits.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号