首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Chicks were infected in the bursa with a field strain of infectious bursal disease virus. Inter- and intracellular edema, condensation and margination of nuclear chromatin, increased number of lysosomes in macrophages, and lymphocytolytic changes appeared earliest by 8 hours post infection. Inclusions containing spheroid to hexagonal virus particles were seen in the cytoplasm of the macrophages. Multiplying virus particles in crystalline arrays arranged either in single or in multiple clusters were seen in the cytoplasm of macrophages, lymphocytes and light stained reticular epithelial cells.  相似文献   

2.
3.
Effect of environmental pH on adenovirus-associated virus.   总被引:1,自引:0,他引:1  
The influence of environmental pH on AAV was studied in infectious virus titrations, induction of CF antigens production of infectious virus, induction of immunofluorescent stainable antigen, and aggregation of the viral particles. The pH of the medium was found to influence the titer of virus stocks in that less virus was registered at acid pH's, giving differences of up to 105 TCID50 in HEK and HEp-2 cells. Less infectious virus was produced in KB cells, and decreased amounts of CF antigen appeared at acid pH's. However, increased levels of detectable intracellular FA antigen appeared at acid pH's. Electron microscopic examination of AAV particles negatively stained at various pH's showed increasingly large aggregates of particles as the pH was lowered. Under the acid conditions studied, the adenovirus helper and cell activities were only slightly suppressed, with the greatest effect due to aggregation of the virus particles.  相似文献   

4.
Human cytomegalovirus (HCMV) replicates in the nuclei of infected cells. Successful replication therefore depends on particle movements between the cell cortex and nucleus during entry and egress. To visualize HCMV particles in living cells, we have generated a recombinant HCMV expressing enhanced green fluorescent protein (EGFP) fused to the C terminus of the capsid-associated tegument protein pUL32 (pp150). The resulting UL32-EGFP-HCMV was analyzed by immunofluorescence, electron microscopy, immunoblotting, confocal microscopy, and time-lapse microscopy to evaluate the growth properties of this virus and the dynamics of particle movements. UL32-EGFP-HCMV replicated similarly to wild-type virus in fibroblast cultures. Green fluorescent virus particles were released from infected cells. The fluorescence stayed associated with particles during viral entry, and fluorescent progeny particles appeared in the nucleus at 44 h after infection. Surprisingly, strict colocalization of pUL32 and the major capsid protein pUL86 within nuclear inclusions indicated that incorporation of pUL32 into nascent HCMV particles occurred simultaneously with or immediately after assembly of the capsid. A slow transport of nuclear particles towards the nuclear margin was demonstrated. Within the cytoplasm, most particles performed irregular short-distance movements, while a smaller fraction of particles performed centripetal and centrifugal long-distance movements. Although numerous particles accumulated in the cytoplasm, release of particles from infected cells was a rare event, consistent with a release rate of about 1 infectious unit per h per cell in HCMV-infected fibroblasts as calculated from single-step growth curves. UL32-EGFP-HCMV will be useful for further investigations into the entry, maturation, and release of this virus.  相似文献   

5.
A deletion mutation affecting vpu was introduced into an infectious molecular clone of human immunodeficiency virus type 1, and the resultant phenotype was examined after infection of human T lymphocytes. The absence of vpu resulted in an accumulation of cell-associated viral proteins and impaired the release of progeny virions. Both electron microscopic and biochemical analyses indicated that a large proportion of the mutant particles was attached to the surface of infected cells. Significant variation in the size and shape of these progeny virions was observed. In addition, intracytoplasmic particles, some of which formed aberrant budding structures, were visualized in T cells infected with the vpu mutant. Indirect immunofluorescence analyses of cultures inoculated with wild-type virus with use of a vpu-specific antiserum demonstrated that vpu is mainly localized to a perinuclear region in the cytoplasm of virus-producing cells.  相似文献   

6.
The uptake of minute virus of mice into cells in tissue culture was examined biochemically and by electron microscopy. Cell-virus complexes were formed at 4 degrees C, and uptake of virus was followed after the cells were shifted to 37 degrees C. The infectious particles appeared to enter cells at 37 degrees C by a two-step process. The first and rapid phase was measured by the resistance of cell-bound virus to elution by EDTA. The bulk of the bound virus particles became refractory to elution with EDTA within 30 min of incubation at 37 degrees C. The infectious particles became resistant to EDTA elution at the same rate. The second, slower phase of the uptake process was measured by the resistance of infectious particles to neutralization by antiserum. This process was complete within 2 h of incubation at 37 degrees C. During this 2-h period, labeled viral DNA became progressively associated with the nuclear fraction of disrupted cells. The uptake of infectious virus could occur during the G1 phase of the cell cycle and was not an S phase-specific event. The uptake process was not the cause of the S phase dependence of minute virus of mice replication. In electron micrographs, virus absorbed to any area of the cell surface appeared to be taken into the cell by pinocytosis.  相似文献   

7.
The production of infectious virus, hemagglutinin, and viral (V) antigens and the changes in ribonucleoprotein (RNP) and lipoprotein metabolism have been studied in four sublines of HeLa cells infected with the PR8 and a PR8 recombinant strain of influenza virus. Much greater amounts of infectious virus and much less hemagglutinin were produced by the PR8 recombinant than by PR8 virus in all four cell lines. Different amounts of infectious virus per infected cell were produced by the recombinant in the four cell lines, whereas very little infectious virus was produced by the PR8 strain in any of the HeLa cells. In all cell lines infected with both strains of virus, "soluble" (S) antigen appeared early in the nucleolus. In cells infected with PR8 recombinant, S antigen subsequently filled the nucleus and later appeared in the cytoplasm. In most cells infected with PR8 virus, nuclear S antigen did not fuse to fill the nucleus, and S antigen was not detected in the cytoplasm. V antigen was observed in the cytoplasm of cells when diffuse nuclear S antigen had formed. The earliest and most frequent change in the RNP of the infected cells was a decrease in stainable RNP spherules (nucleolini) in the nucleolus. This was followed, in a smaller proportion of cells, by the appearance of nuclear and cytoplasmic inclusions containing RNP. There was a characteristic difference in the morphology of the cytoplasmic inclusions produced by the two strains of virus, but the same types of inclusions were observed in all four HeLa lines. A significant increase in lipoprotein was observed only in association with the cytoplasmic inclusions produced by PR8 recombinant virus. There was a striking difference in the proportion of cells with cytochemical changes in RNP in the four cell lines. A significant cytopathic effect (CPE) was observed only in three virus-cell systems in which a high proportion of cells exhibited changes in nucleolinar RNP. It is suggested that disappearance of RNP in the nucleolini may be an indication of shutdown of host ribonucleic acid synthesis and that this in turn results in a CPE. Virus infection resulted in a C-mitotic block that was followed by karyorrhexis. Infection of the cell did not always result in the production of infectious virus, in changes in the RNP of the nucleolini, in the development of nuclear or cytoplasmic RNP inclusions, or in CPE. The results suggest that production of infectious virus, shutdown of cellular RNP synthesis with accompanying CPE, and the formation of inclusions appear to be independent events.  相似文献   

8.
The differentiated human hepatoma cell line Hep-G2 was transfected with cloned duck hepatitis B virus (DHBV) DNA. Introduction of closed circular DNA into the human liver cells resulted in the production of viral proteins: core antigen was detected in the cytoplasm, and e antigen, a related product, was secreted into the medium. Moreover, viral particles were released into the tissue culture medium which were indistinguishable from authentic DHBV by density, antigenicity, DNA polymerase activity, and morphology. Intravenous injection of tissue culture-derived DHBV particles into Pekin ducks established DHBV infection. In conclusion, transfection of human hepatoma cells with cloned DHBV DNA results in the production of infectious virus, as occurs with cloned human hepatitis B virus DNA. Human liver cells are therefore competent to support production of the avian and mammalian hepadnaviruses, indicating that liver-specific viral gene expression is controlled by evolutionarily conserved mechanisms. This new DHBV transfection system offers the opportunity to rapidly produce mutated DHBV which then can be further investigated in Pekin ducks.  相似文献   

9.
Host cell interactions of human adenovirus serotypes belonging to subgroups B (adenovirus type 3 [Ad3] and Ad7) and C (Ad2 and Ad5) were comparatively analyzed at three levels: (i) binding of virus particles with host cell receptors; (ii) cointernalization of macromolecules with adenovirions; and (iii) adenovirus-induced cytoskeletal alterations. The association constants with human cell receptors were found to be similar for Ad2 and Ad3 (8 x 10(9) to 9 x 10(9) M-1), and the number of receptor sites per cell ranged from 5,000 (Ad2) to 7,000 (Ad3). Affinity blottings, competition experiments, and immunofluorescence stainings suggested that the receptor sites for adenovirus were distinct for members of subgroups B and C. Adenovirions increased the permeability of cells to macromolecules. We showed that this global effect could be divided into two distinct events: (i) cointernalization of macromolecules and virions into endocytotic vesicles, a phenomenon that occurred in a serotype-independent way, and (ii) release of macromolecules into the cytoplasm upon adenovirus-induced lysis of endosomal membranes. The latter process was found to be type specific and to require unaltered and infectious virus particles of serotype 2 or 5. Perinuclear condensation of the vimentin filament network was observed at early stages of infection with Ad2 or Ad5 but not with Ad3, Ad7, and noninfectious particles of Ad2 or Ad5, obtained by heat inactivation of wild-type virions or with the H2 ts1 mutant. This phenomenon appeared to be a cytological marker for cytoplasmic transit of infectious virions within adenovirus-infected cells. It could be experimentally dissociated from vimentin proteolysis, which was found to be serotype dependent, occurring only with members of subgroup C, regardless of the infectivity of the input virus.  相似文献   

10.
Structure and Development of Rabies Virus in Tissue Culture   总被引:20,自引:14,他引:6       下载免费PDF全文
Structure and development of two fixed rabies virus strains in baby hamster kidney cells (BHK/21) were investigated by electron microscopy. The morphological development was correlated with fluorescent-antibody staining and infectivity titration. The uptake of virus was enhanced by addition of diethylaminoethyl dextran, and structural changes became apparent in the cytoplasm 8 to 9 hr after infection, when fluorescent-antibody staining was first discernible. These changes consisted of matrices containing fibers replacing normal cytoplasmic structures. Virus particles appeared at the edges of these matrices and inside them at 24 to 48 hr. This corresponded to significant rises in intracellular infectious virus. Formation of virus particles by budding from cell membranes was seen at 72 hr. Further incubation of the infected cells resulted in synthesis of bizarre structural elements. The complete virus particle was bullet-shaped with an average size of 180 by 75 mmu. It consisted of an inner core of filamentous material surrounded by two membranes of different densities. The surface showed a honeycomb arrangement with surface protrusions 60 to 70 A long having a knoblike structure at their distal end. These surface protrusions were absent at the flat end of the virus particle.  相似文献   

11.
Previously, we reported (Fritsch and Temin, J. Virol. 21:119-130, 1977) that infectious viral DNA was not present in spleen necrosis virus-infected stationary chicken cells. However, a stable intermediate was present in such infected stationary cells as evidenced by the appearance of infectious viral DNA shortly after serum stimulation of these cells. After serum stimulation of infected stationary cells, the infectious viral DNA appeared first in the nucleus. In contrast, in infected dividing cells the infectious viral DNA appeared first in the cytoplasm. Significantly reduced amounts of complete plus- or minus-strand viral DNAs were detected by nucleic acid hybridization in stationary chicken cells infected with spleen necrosis virus or Schmidt-Ruppin Rous sarcoma virus compared with the amounts detected in infected dividing cells. These experiments indicated that infected stationary cells did not contain complete noninfectious copies of viral DNA. Furthermore, 5-bromodeoxyuridine labeling and cesium chloride density gradient centrifugation analysis of the infectious viral DNA that appeared after serum stimulation of infected stationary cells indicated that most viral DNA synthesis occurred after addition of fresh serum.  相似文献   

12.
Alphaviruses are small, spherical, enveloped, positive-sense, single-stranded, RNA viruses responsible for considerable human and animal disease. Using microinjection of preassembled cores as a tool, a system has been established to study the assembly and budding process of Sindbis virus, the type member of the alphaviruses. We demonstrate the release of infectious virus-like particles from cells expressing Sindbis virus envelope glycoproteins following microinjection of Sindbis virus nucleocapsids purified from the cytoplasm of infected cells. Furthermore, it is shown that nucleocapsids assembled in vitro mimic those isolated in the cytoplasm of infected cells with respect to their ability to be incorporated into enveloped virions following microinjection. This system allows for the study of the alphavirus budding process independent of an authentic infection and provides a platform to study viral and host requirements for budding.  相似文献   

13.
The conversion of simian virus 40 (SV40) component II deoxyribonucleic acid to component I has been used to assay polynucleotide ligase in extracts of tissue culture cells. All cell types examined, including chicken, hamster, mouse, monkey, and human cells, contained adenosine triphosphate-dependent ligase. After infection of mouse embryo, monkey kidney, and HeLa cells with polyoma virus, SV40, and vaccinia virus, respectively, the enzyme activity increased, but its cofactor requirement was unchanged. In vaccinia virus-infected cells, the increased activity was localized in the cytoplasm. Ligase induction occurred in the presence of cytosine arabinoside but was prevented by puromycin. Rifampicin blocked the production of infectious vaccinia particles but had little effect on the induction of ligase.  相似文献   

14.
Formation and structure of infectious DNA of spleen necrosis virus.   总被引:40,自引:25,他引:15       下载免费PDF全文
The kinetics of formation and the structure of infectious DNA of spleen necrosis virus were determined. Nonintegrated infectious viral DNA first appeared 18 to 24 h after infection of dividing cells and persisted for more than 14 days. The nonintegrated infectious viral DNA was in the form of either a double-stranded linear DNA with a molecular weight of 6 X 10(6), detected in both the cytoplasm and nucleus, or a closed circular DNA of the same molecular weight, detected primarily in the nucleus. Integrated infectious viral DNA appeared soon after the nonintegrated infectious viral DNA and was the predominant form of infectious viral DNA late after infection. Integration of the spleen necrosis virus DNA into the chicken cell genome was demonstrated by three independent criteria. Nucleic acid hybridization indicated that the linear infectious viral DNA had a 5- to 10-fold higher specific infectivity than either the closed circular or integrated infectious viral DNA. Infectious viral DNA did not appear in infected stationary cells, indicating some cellular influence on the formation of infectious viral DNA.  相似文献   

15.
Neurovirulent TYCSA strain and attenuated Schwarz strain of measles virus and Halle strain of subacute sclerosing panencephalitis (SSPE) virus replicated in cultures of human lymphoid cell lines of the T-cell type, MOLT-3, MOLT-4 and CCRF-CEM. TYCSA and Halle strains grew rapidly, but Schwarz strain grew slowly in these cell lines. Furthermore, these three strains established persistent infection in CCRF-CEM cells but not in the other cell lines. In these persistently infected cultures an almost entire population of cells were shown to be infected and infectious virus was produced constantly for over 100 days. Cells persistently infected with Schwarz strain contained nucleocapsid structures in both the nucleus and cytoplasm and produced low titered infectious virus, whereas nucleocapsid structures were observed only in the cytoplasm of cells persistently infected with either TYCSA or Halle strain and the titers of infectious virus produced from these cells were high.  相似文献   

16.
A favorable system which is amenable to frequent and reproducible sampling, consisting of suspension cultures of strain L cells and vaccinia virus, was employed to study the animal virus-mammalian host cell relationship. The three principal aspects investigated concerned the adsorption and penetration of vaccinia into the host, the relationship between the sequence of virus development and the production of infectious particles, and the changes in the fine structure of the host cells. Experiments in which a very high multiplicity of infection was used revealed that vaccinia is phagocytized by L cells in less than 1 hour after being added to the culture, without any apparent loss of its outer limiting membranes. Regions of dense fibrous material, thought to be foci of presumptive virus multiplication, appear in the cytoplasm 2 hours after infection. A correlation between electron microscope studies and formation of infectious particles shows that although immature forms of the virus appear 4 hours after infection, infectious particles are produced 6 hours after infection of the culture, at the time when mature forms of vaccinia appear for the first time in thinly sectioned cells. Spread of the infection is gradual until eventually, after 24 hours, virus is being elaborated throughout the cytoplasm. Addition of vaccinia to monolayer cultures induced fusion of L cells and rapid formation of multinucleate giant forms. In both suspension and stationary cultures infected cells elaborate a variety of membranous structures not present in normal L cells. These take the form of tube-like lamellar and vesicular formations, or appear as complex reticular networks or as multi-laminar membranes within degenerating mitochondria.  相似文献   

17.
18.
Human cytomegalovirus was capable of adsorbing to and penetrating guinea pig cells, but was unable to replicate new virus. Cultures infected with virus inoculum of high titer showed a cytopathic effect (CPE) characterized by cell rounding. This CPE depended upon the presence of infectious virus, and its extent was directly related to the multiplicity of infection. Staining by indirect immunofluorescence by using human convalescent sera was positive as early as 4 h postinfection. Maximal fluorescence was observed 24 h postinfection when 50% of the cells contained fluorescent antigens both in nuclei and cytoplasm. No evidence for viral replication was found, and no defective particles were detected by electron microscopy. Treatment with actinomycin D or with cycloheximide strongly inhibited both the fluorescent antigens and the CPE, whereas 5-fluorodeoxyuridine and bromodeoxyuridine were ineffective.  相似文献   

19.
MOPC-460 mouse plasmacytoma cells produce intracellular A-type particles and extracellular oncornavirus-like particles ("myeloma-associated virus," abbreviated MAV). The genomes of these two particles are closely related. During attempts to establish infections with MOPC-460 extracellular particles, we isolated ecotropic and xenotropic infectious forms of murine leukemia virus. We have investigated the relation of these isolates to A-type particles and to MAV by nucleic acid hybridization. Using complementary DNA probes prepared from the two isolates, we found that these infectious murine leukemia viruses differ from A-type particles and from MAV. Moreover, we found that MAV is the predominant extracellular component: the ecotropic and xenotropic forms of murine leukemia virus were present at only low levels (less than 5%) in MAV preparations. Neither the SC-1 cells infected with ectropic murine leukemia virus nor the mink cells infected with xenotropic murine leukemia virus showed any A-type particles in their cytoplasm when examined by electron microscopy. Our inability to demonstrate infection by the A-type particle-related component, MAV, suggests that these may be defective.  相似文献   

20.
根据水稻黑条矮缩病毒(RBSDV)侵染玉米(Zea mays L.)的症状发展过程先后取叶脉做超薄切片,在透射电镜下观察病毒在细胞内的侵染状态,并存取样前用灰飞虱无毒若虫进行饲毒和传毒试验。结果显示RBSDV侵入玉米叶细胞后先出现在细咆壁附近,个别粒子似与胞间连丝相连;细胞质内产生病毒基质,病毒粒子先增殖并分布其周边,后向病毒基质内扩展;当病毒粒子布满病毒基质后在细胞质中出现直径约90nm的管状结构,病毒成串排列在该管状结构中;随后管状结构逐渐消失,最终形成晶格状聚集排列。用灰飞虱无毒若虫在细胞内病毒基质出现和病毒增殖期饲毒的,到成虫时分别有2.93%和7.83%个体传毒率;在细胞内病毒成串分布于管状结构和品格状聚集排列期饲毒的,到成虫时均不能传毒。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号