共查询到20条相似文献,搜索用时 0 毫秒
1.
Effects of monensin on the synthesis, transport, and intracellular degradation of proteoglycans in rat ovarian granulosa cells in culture 总被引:2,自引:0,他引:2
Rat ovarian granulosa cells, isolated from immature female rats 48 h after stimulation with 5 IU of pregnant mare's serum gonadotropin, were maintained in culture. The effects of monensin, a monovalent cationic ionophore, on various aspects of proteoglycan metabolism were studied by metabolically labeling cultures with [35S]sulfate, [3H]glucosamine, or [3H]glucose. Monensin inhibited post-translational modification of both heparan sulfate (HS) proteoglycans and dermatan sulfate (DS) proteoglycans, resulting in decreased synthesis of completed proteoglycans [( 35S]sulfate incorporation decreased to 10% of control by 30 microM monensin, with an ED50 approximately 1 microM). Proteoglycans synthesized in the presence of monensin showed undersulfation of both DS and HS glycosaminoglycans and altered N-linked and O-linked oligosaccharides, suggesting that the processing of all sugar moieties is closely associated. Monensin caused a decrease in the endogenous sugar supply to the UDP-N-acetylhexosamine pool as indicated by an increased 3H incorporation into DS chains [( 3H]glucosamine as precursor) in spite of the decrease in glycosaminoglycan synthesis. Monensin reduced and delayed transport of both secretory and membrane-associated proteoglycans from the Golgi complex to the cell surface. It took 2-4 min for newly labeled proteoglycans to reach the main transport process inhibited by monensin. Monensin at 30 microM did not prevent internalization of cell surface 35S-labeled proteoglycans but almost completely inhibited their intracellular degradation to free [35S]sulfate (ED50 approximately 1 microM), resulting in intracellular accumulation of both DS and HS proteoglycans. Pulse-chase experiments demonstrated that one of the intracellular degradation pathways involving proteolysis of both DS and HS proteoglycans and limited endoglycosidic cleavage of HS continued to operate in the presence of monensin. These results suggest that the intracellular degradation of proteoglycans involve both acidic and nonacidic compartments with monensin inhibiting those processes that normally occur in such acidic compartments as endosomes or lysosomes by raising their pH. 相似文献
2.
Characterization of heparan sulfate proteoglycans synthesized by rat ovarian granulosa cells in culture 总被引:4,自引:0,他引:4
Rat ovarian granulosa cells were isolated from immature female rats after stimulation with pregnant mare's serum gonadotropin and maintained in culture. Proteoglycans were labeled using [35S]sulfate, [3H]serine, [3H]glucosamine, or [3H]mannose as precursors. A species of heparan sulfate proteoglycan was purified using DEAE-Sephacel chromatography under dissociative conditions in the presence of detergent. The heparan sulfate proteoglycan, which constituted approximately 15% of the 35S-labeled proteoglycans in the culture medium has a similar hydrodynamic size (Kd = 0.62 on Sepharose CL-2B) and buoyant density distribution in CsCl density gradients as the low buoyant density dermatan sulfate proteoglycan synthesized by the same granulosa cells and described in the accompanying report (Yanagishita, M., and Hascall, V. C. (1983) J. Biol. Chem. 258, 12847-12856). The heparan sulfate chains (average Mr = 28,000) have an average of 0.8-0.9 sulfate groups/repeating disaccharide, of which 50% are N-sulfate, 30% are alkaline-labile O-sulfate (presumably on the 6-position of glucosamine residues), and 20% are alkaline-resistant O-sulfate groups. Alkaline borohydride treatment released both N-linked oligosaccharide-peptides containing mannose, glucosamine, and sialic acid, and O-linked oligosaccharides. Trypsin digestion of the proteoglycan generated fragments which contain (a) glycosaminoglycan-peptides with an average of 2 heparan sulfate chains/peptide; (b) clusters of O-linked oligosaccharides on peptides; and (c) N-linked oligosaccharide-peptides, which are as small as single N-linked oligosaccharides. The compositions of the O-linked and N-linked oligosaccharides and the trypsin fragments of this heparan sulfate proteoglycan were very similar to those of the low buoyant density dermatan sulfate proteoglycan synthesized by the same cells. 相似文献
3.
M Yanagishita 《The Journal of biological chemistry》1992,267(14):9499-9504
The glycosylphosphatidylinositol (GPI)-anchor of the plasma membrane-associated heparan sulfate (HS) proteoglycan was metabolically radiolabeled with [3H]myristic acid, [3H]palmitic acid, [3H]inositol, [3H]ethanolamine, or [32P]phosphate in rat ovarian granulosa cell culture. Cell cultures labeled with [3H]myristic acid or [3H]palmitic acid were extracted with 4 M guanidine HCl buffer containing 2% Triton X-100 and the proteoglycans were purified by ion exchange chromatography after extensive delipidation. Specific incorporation of 3H into GPI-anchor was demonstrated by removing the label with a phosphatidylinositol-specific phospholipase C (PI-PLC). Incorporation of 3H activity into glycosaminoglycans and core glycoproteins was also demonstrated. However, the specific activity of 3H in these structures was approximately 2 orders of magnitude lower than that in the GPI-anchor, suggesting that 3H label was the result of the metabolic utilization of catabolic products of the 3H-labeled fatty acids. PI-PLC treatment of cell cultures metabolically labeled with [3H]inositol, [3H]ethanolamine, or [32P]phosphate specifically released radiolabeled cell surface-associated HS proteoglycans indicating the presence of GPI-anchor in these proteoglycans. GPI-anchored HS proteoglycans accounted for 20-30% of the total cell surface-associated HS proteoglycans and virtually all of them were removed by PI-PLC. These results further substantiate the presence of GPI-anchored heparan sulfate proteoglycan in ovarian granulosa cells and its cell surface localization. 相似文献
4.
Rat ovarian granulosa cells were isolated from immature female rats after stimulation with pregnant mare's serum gonadotropin and then maintained in culture. Proteoglycans were labeled using [35S]sulfate, D-[3h]glucosamine, or L-[3H]serine as precursors. 35S-labeled proteoglycans in the medium increased linearly up to 72 h after a 6- to 8-h lag period, and those in a 4 M guanidine HCl extract of the cell layer increased for about 16 h and then reached a plateau and stayed fairly constant up to 72 h. Two distinct sizes of proteoglycans were observed in the medium. The smaller (Kav = 0.60 on Sepharose CL-2B) had lower buoyant densities in dissociative gradients (rho less than 1.4 g/ml). The larger (Kav = 0.26 on Sepharose CL-2B) had high buoyant densities (recovered mainly in the bottom (D1) fraction of the dissociative gradient). More than 90% of the D1 proteoglycans contained dermatan sulfate chains (average Mr = 38,000) which yielded 84% 4-sulfated and 15% disulfated disaccharides after digestion with chondroitinase ABC. About 8% of the 35S-label in D1 was present as a heparan sulfate proteoglycan. When [3H]-glucosamine was used as a precursor, 28% of the 3H activity in the D1 proteoglycans was located in three major oligosaccharide components, two of which were similar or identical with those observed previously in D1 proteoglycans isolated from porcine follicular fluid. These results plus similar susceptibility of the labeled proteoglycans to proteolytic enzymes, especially plasmin, suggest that the granulosa cells synthesize the predominant follicular fluid proteoglycans. 相似文献
5.
The effect of the protease inhibitor leupeptin on the intracellular distribution of [14C]-sucrose-asialofetuin in isolated rat hepatocytes was investigated. Leupeptin had no effect on the uptake but reduced the degradation of asialofetuin. Fractionation of hepatocytes by isopycnic centrifugation in sucrose gradients indicated that prolonged treatment with leupeptin inhibited the uptake of asialofetuin into the lysosomes. Therefore, leupeptin inhibits degradation of asialofetuin both by inhibiting intralysosomal proteolysis and transport of endocytosed asialofetuin to the lysosomes. 相似文献
6.
Metabolism of proteoglycans in rat ovarian granulosa cell culture. Multiple intracellular degradative pathways and the effect of chloroquine 总被引:9,自引:0,他引:9
The metabolism of endogenously labeled proteoglycans was studied in rat ovarian granulosa cell cultures by a series of pulse-chase experiments using [35S]sulfate as a precursor. More than 90% of the newly synthesized proteoglycans are transported to the cell surface (trypsin-accessible compartment) with a median transit time of 13 min. The membrane-bound heparan sulfate-proteoglycan (HS-PG) is lost from the cell surface either by release into the medium (30%, with t1/2 of 4 h) or by internalization (70%, with t1/2 of 4 h). Internalized HS-PG, which does not recycle to the cell surface, is degraded by two major pathways. In pathway 1, 60% of the internalized HS-PG migrates to lysosomes with a relatively short t1/2 of 30 min, where it is rapidly degraded, releasing free [35S]sulfate without detectable intermediate products. Chloroquine treatment inhibited degradation, resulting in the accumulation of intact proteoglycans inside the cell. In pathway 2, 40% of the internalized HS-PG is first subjected to extensive proteolysis and limited endoglycosidic degradation yielding single HS chains about 1/3 of their original size (t1/2 of 30 min). Chloroquine did not inhibit this step. The partially degraded HS is then degraded further by limited endoglycosidic activity to about 1/4-1/5 the original size (t1/2 of 30-60 min). This step is inhibited by chloroquine. These smaller fragments have a relatively long t1/2 of 3-4 h before rapid degradation in the lysosomes, releasing free [35S]sulfate. Approximately 7% of the newly synthesized HS-PG that is not transported to the cell surface is degraded directly by pathway 2. The larger dermatan sulfate proteoglycan (DS-I) is transported to the cell surface from which it is quantitatively released into the medium with a t1/2 of 4-6 h. The smaller DS-PG (DS-II) is metabolized similarly to the HS-PG. Most (greater than 90%) is transported to the cell surface from which it is lost either by release into the medium (40%) or by internalization (60%). About 60% of the internalized DS-II is degraded by pathway 1 (t1/2 of 30 min), while the remainder appears to be degraded by pathway 2 with an overall t1/2 of 4 h. However, in contrast to the degradation of HS-PG by pathway 2, no endoglycosidic degradation of the DS chains occurred. 相似文献
7.
M Yanagishita 《The Journal of biological chemistry》1992,267(14):9505-9511
Rat ovarian granulosa cells synthesize two distinct species of plasma membrane-intercalated heparan sulfate (HS) proteoglycans; glycosylphosphatidylinositol (GPI)-anchored and core protein-intercalated HS proteoglycans. Both species of HS proteoglycans are primarily localized on the plasma membrane. Cell surface localization of GPI-anchored and protein-intercalated HS proteoglycans can be determined by their accessibility to exogenously added phosphatidylinositol-specific phospholipase C (PI-PLC) and trypsin, respectively. Kinetic parameters for the processes involving their transfer from the Golgi to the cell surface, endocytosis and secretion, and the modes of intracellular degradation were determined by metabolic labeling experiments using [35S]sulfate and various chase protocols in combination with the use of PI-PLC and trypsin in rat ovarian granulosa cells. The experiments demonstrated that (i) both HS proteoglycan species are transferred from the Golgi to the cell surface with an average transit time of approximately 12 min. (ii) GPI-anchored HS proteoglycans are endocytosed with a t1/2 approximately 3 h, without being shed into the medium, and they are rapidly degraded, t1/2 approximately 25 min, without generating recognizable degradation intermediates. (iii) Protein-intercalated HS proteoglycans are partly (approximately 30%) shed from the cell surface into the medium and the remaining approximately 70% are endocytosed with a t1/2 approximately 4 h. After endocytosis, they undergo a slow (t1/2 approximately 4 h) stepwise degradation generating distinct HS oligosaccharides as degradation intermediates. These results indicate that the GPI-anchored and the protein-intercalated HS proteoglycans have distinct secretory, endocytotic, and intracellular degradation pathways probably due to the differences in their anchor structures. 相似文献
8.
9.
M Ascoli 《Biochimica et biophysica acta》1979,586(3):608-614
The ability of leupeptin to block the degradation of receptor-bound human choriogonadotropin has been studied. It was found that this compound inhibited hormone degradation and intracellular cathepsin B activity in a parallel fasion, without affecting hormone-stimulated steroidogenesis. 相似文献
10.
Ethanol (50 mM) inhibited proteolysis in the perfused rat liver during stringent amino acid deprivation and also in the presence of normal and 10 times normal concentrations of plasma amino acids. The concentration-response curve of ethanol reached a plateau after 5 mM in both the presence and the absence of normal plasma amino acids, suggesting inhibition by oxidation products of ethanol. Intracellular glutamine, tyrosine and proline increased in concentration with ethanol, but the increases were too small to explain the observed inhibition of proteolysis. The uptake of 125I-asialofetuin was slightly decreased and the output of ammonia increased in the presence of ethanol. These, together with a significant suppression of basal proteolysis in the presence of amino acids, suggest that lysosomal function was directly affected. Electron-microscopic examination of lysosomal components showed that the aggregate volume of autophagosomes (initial vacuoles) were significantly smaller in livers perfused with ethanol than in controls. However, the equivalent volume of autolysosomes (degradative vacuoles) was the same in both groups. According to these results, ethanol inhibits protein degradation in the liver by two discrete mechanisms: one decreasing the formation of autophagic vacuoles and the other involving lysosomotropic inhibition, possibly via ammonia. 相似文献
11.
Ovarian granulosa cells collected from small antral follicles from immature rats were cultured in McCoy's 5A medium, for 1-6 days in the presence of delta 4-androstenedione, testosterone, dihydrotestosterone, and dehydroepiandrosterone (10(-5) M and 10(-7) M). Granulosa cells examined by electron microscopy demonstrated many lipid droplets, mitochondria with tubular cristae and profiles of smooth endoplasmic reticulum, all suggestive of active metabolism in the cell. Cells cultured in androstenedione, testosterone, dihydrotestosterone and dehydroepiandrosterone produced estrogen and progesterone as measured by radioimmunoassay. By day 4, cells cultured in androgen had almost completely degenerated. The control cells acquired none of the aforementioned characteristics and survived up to beyond 6 days, at which time the experiments were terminated. This study supports the hypothesis that high concentrations of androgens in cultured granulosa cells contribute to their degeneration through altered structure, which is associated with functional change. 相似文献
12.
D M Driscoll J R Schreiber V M Schmit G S Getz 《The Journal of biological chemistry》1985,260(15):9031-9038
Apoprotein E (apo-E) is a surface component of several classes of plasma lipoproteins. It functions as a ligand for receptor-mediated uptake of lipoproteins. Granulosa cells from ovaries of diethylstilbestrol-stimulated hypophysectomized immature rats cultured in serum-free medium with [35S]methionine secretes a 34-kDa protein which reacts with a monospecific anti-rat apo-E antibody and represents 0.2% of total secreted protein. Protease mapping confirms that this protein is apoprotein E. The secreted apoprotein E may be complexed with lipid since it floats in the ultracentrifuge at density less than 1.21 micrograms/ml. Freshly isolated granulosa cells contain receptors for follicle stimulating hormone (FSH) but not for human chorionic gonadotropin (hCG) or prolactin. Apoprotein E secretion is stimulated 2-fold by FSH, but hCG and prolactin have no effect. When granulosa cells develop hCG and prolactin receptors after 48 h of culture with FSH, apoprotein E secretion is not stimulated by addition of FSH, hCG, or prolactin although steroidogenesis is induced. The addition of 10(-7) M androgen plus FSH stimulates a marked increase in progestin synthesis over FSH alone, but androgen has little added effect on apoprotein E secretion. Cholera toxin (1.25 micrograms/ml) and dibutyryl cAMP (5 mg/ml), both of which increase intracellular cAMP, stimulate apo-E secretion 9-fold and 12-fold, respectively. The dibutyryl cAMP effect is dependent on both dose (greater than or equal to 0.5 mg/ml required) and time (onset at 24 h, maximum at 48 h, and back to near baseline at 96 h). Isobutylmethylxanthine, a phosphodiesterase inhibitor, augments FSH-stimulated apoprotein E synthesis 2.5-fold, supporting a role for cAMP in mediating the FSH effect. This is the first demonstration of the hormonal regulation of apoprotein E synthesis in an extrahepatic tissue. 相似文献
13.
Ovarian granulosa cells synthesize anticoagulant heparan sulfate proteoglycans (aHSPGs), which bind and activate antithrombin III. To determine if aHSPGs could contribute to the control of proteolytic activities involved in follicular development and ovulation, we studied the pattern of expression of these proteoglycans during the ovarian cycle. aHSPGs were localized on cells and tissues by (125)I-labeled antithrombin III binding followed by microscopic autoradiography. Localization of aHSPGs has shown that cultured granulosa cells, hormonally stimulated by gonadotropins to differentiate in vitro, up-regulate their synthesis and release of aHSPGS: In vivo, during gonadotropin-stimulated cycle, aHSPGs are present on granulosa cells of antral follicles and are strongly labeled in preovulatory follicles. These data demonstrate that aHSPG expression in the ovarian follicle is hormonally induced to culminate in preovulatory follicles. Moreover, we have shown that five heparan sulfate core proteins mRNA (perlecan; syndecan-1, -2, and -4; and glypican-1) are synthesized by granulosa cells, providing attachment for anticoagulant heparan sulfate chains on the cell surface and in the extracellular matrix. These core proteins are constantly expressed during the cycle, indicating that modulations of aHSPG levels observed in the ovary are likely controlled at the level of the biosynthesis of anticoagulant heparan sulfate glycosaminoglycan chains. This expression pattern enables aHSPGs to focus serine protease inhibitors in the developing follicle to control proteolysis and fibrin formation at ovulation. 相似文献
14.
15.
The modulation of ovarian steroidogenesis by epidermal growth factor (EGF) was investigated in cultured rat granulosa cells. Granulosa cells, obtained from ovaries of immature, hypophysectomized, estrogen-treated rats, were incubated for 2 days with EGF, follicle-stimulating hormone (FSH), or EGF plus FSH. Treatment with EGF did not affect estrogen production, but stimulated progestin (i.e. progesterone and 20 alpha-hydroxy-pregn-4-en-3-one) production in a dose-dependent manner. Stimulation of progestin production by EGF appears to be the result of an increase in pregnenolone biosynthesis as well as increases in the activities of 20 alpha-hydroxysteroid dehydrogenase and 3 beta-hydroxysteroid dehydrogenase/isomerase. Treatment with FSH increased both estrogen and progestin production by cultured granulosa cells. When cells were treated concomitantly with EGF, FSH-stimulated estrogen production was inhibited, while progestin production was further enhanced. The EGF enhancement of FSH-stimulated progestin production appears to be the result of synergistic increases in pregnenolone biosynthesis and 20 alpha-hydroxysteroid dehydrogenase activity, resulting in substantial increases in 20 alpha-hydroxypregn-4-en-3-one but not progesterone production. The effects of EGF were shown to be time-dependent. The concept of a direct action of EGF on rat granulosa cells is reinforced by the demonstration of high affinity (Kd approximately 3 X 10(-10) M), low capacity (approximately 5,000 sites/cell) EGF binding sites in these cells. Thus, EGF interacts with specific granulosa cell receptors to stimulate progestin but to inhibit estrogen biosynthesis. 相似文献
16.
Tunicamycin inhibits proteoglycan synthesis in rat ovarian granulosa cells in culture 总被引:2,自引:0,他引:2
M Yanagishita 《Archives of biochemistry and biophysics》1986,251(1):287-298
The effects of tunicamycin, an inhibitor of N-linked oligosaccharide biosynthesis, on the synthesis and turnover of proteoglycans were investigated in rat ovarian granulosa cell cultures. The synthesis of proteoglycans was inhibited (40% of the control at 1.6 micrograms/ml tunicamycin) disproportionately to that of general protein synthesis measured by [3H]serine incorporation (80% of control). Proteoglycans synthesized in the presence of tunicamycin lacked N-linked oligosaccharides but contained apparently normal O-linked oligosaccharides. The dermatan sulfate and heparan sulfate chains of the proteoglycans had the same hydrodynamic size as control when analyzed by Sepharose 6B chromatography. However, the disulfated disaccharide content of the dermatan sulfate chains was reduced by tunicamycin in a dose-dependent manner, implying that the N-linked oligosaccharides may be involved in the function of a sulfotransferase which is responsible for sulfation of the iduronic acid residues. When [35S]sulfate and [3H]glucosamine were used as labeling precursors, the ratio of 35S/3H in chondroitin 4-sulfate was reduced to approximately 50% of the control by tunicamycin, indicating that the drug reduced the supply of endogenous sugar to the UDP-N-acetylhexosamine pool. Neither transport of proteoglycans from Golgi to the cell surface nor their turnover from the cell surface (release into the medium, or internalization and subsequent intracellular degradation) was affected by the drug. Addition of mannose 6-phosphate to the culture medium did not alter the proteoglycan turnover. When granulosa cells were treated with cycloheximide, completion of proteoglycan diminished with a t1/2 of approximately 12 min, indicating the time required for depleting the core protein precursor pool. The glycosaminoglycan synthesizing capacity measured by the addition of p-nitrophenyl-beta-xyloside, however, lasted longer (t1/2 of approximately 40 min). Tunicamycin decreased the core protein precursor pool size in parallel to decreased proteoglycan synthesis, both of which were significantly greater than the inhibition of general protein synthesis. This suggests two possibilities: tunicamycin specifically inhibited the synthesis of proteoglycan core protein, or more likely a proportion of the synthesized core protein precursor (approximately 50%) did not become accessible for post-translational modifications, and was possibly routed for premature degradation. 相似文献
17.
The effects of chemical dissociation on rat ovarian granulosa cell gap junctions has been studied using freeze-fracture electron microscopy. Sequential exposure of granulosa cells within follicles to solutions containing 6·8 mM EGTA [ethylene-bis-(β-aminoethyl ether)-N,N′-tetra acetic acid] and 0·5 M sucrose results in extensive cellular dissociation of the follicular epithelium. Freeze-fracture replicas made from fixed, control or EGTA-treated ovarian follicles exhibit extensive gap junctions between granulosa cells that are characterized by a range of packing order of constituent P-face particles or E-face pits. In contrast, exposure to 0·5 M sucrose containing 1·8 mM EGTA for as little as 1 min results in a consistently close packing of particles or pits which is accompanied by splitting of gap junctions between granulosa cells. The process of junction splitting was studied in detail in replicas prepared from follicles treated sequentially for various periods of time with EGTA and sucrose solutions. Initially, large gap junctions lose their regular shape and fragment into numerous tightly packed aggregates of P-face particles or E-face pits which are separated by unspecialized areas of plasma membrane. Subsequent to junction fragmentation, individual junction plaques separate at sites of cell contact and generate hemijunctions that border the intercellular space, Hemijunctions undergo particle dispersion of the P fracture face which results in an increased density of large intramembrane particles; no corresponding change in E-face pits is discernible at this stage. Morphometric analysis of replicas of tissue undergoing junction splitting indicates that junctional surface area decreases to 10–20% of control levels during this same treatment and so further supports the qualitative observations on junction fragmentation. Viabilities of granulosa cells obtained by these techniques also agree with the sequence observed in the morphometric analysis of the replicas. Finally, within 15 min after placing ovaries in isotonic, Ca2+-containing salt solutions, gap junction reformation occurs by aggregation of particles at sites of intercellular contact. These sites are distinguished by the appearance of short surface protrusions or indentations on their respective P and E fracture faces. The data suggest a mechanism for EGTA-sucrose mediated cellular dissociation in the follicular epithelium in which gap junctional particles are free to move in the plane of the plasma membrane and may be re-utilized to form gap junctions in the presence of extracellular calcium. 相似文献
18.
19.
Cultured rat ovarian granulosa cells undergo a dramatic morphological change when exposed to follicle-stimulating hormone (FSH). Exposure to FSH causes the flattened epithelioid granulosa cells to assume a nearly spherical shape while retaining cytoplasmic processes which contact the substrate as well as adjacent cells. This effect of FSH is preceded by a dose-dependent increase in intracellular cAMP, is potentiated by cyclic nucleotide phosphodiesterase inhibitors, and is mimicked by dibutyryl cAMP. Prostaglandins E1 or E2 and cholera enterotoxin also cause the cells to change shape. A subpopulation of the cells responds to luteinizing hormone. These morphological changes, which are blocked by 2,4-dinitrophenol, resemble those produced by treating cultures with cytochalasin B. Electron microscopy shows that the unstimulated, flattened cells contain bundles of microfilaments particularly in the cortical and basal regions. After FSH stimulation, microfilament bundles are not found in the rounded granulosa cell bodies but they are present in the thin cytoplasmic processes. These data suggest that the morphological change results from a cAMP-mediated, energy-dependent mechanism that may involve the alteration of microfilaments in these cells. 相似文献