首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Human gastrin-releasing peptide: biological potency in humans.   总被引:3,自引:0,他引:3  
Gastrin-releasing peptide (GRP) was infused in graded doses (1-27 pmol/kg per h) to healthy human volunteers to study the effects on gastric, pancreatic and gallbladder functions as well as on gastrin, CCK and PP release. The results were compared to equimolar doses of synthetic bombesin. GRP significantly (P less than 0.05) stimulated gastric and pancreatic secretory responses, gallbladder contraction and gastro-enteropancreatic hormone release in a dose-dependent manner. GRP was found to be equipotent to bombesin with respect to gastric acid secretion, pancreatic enzyme output, gallbladder contraction and plasma hormone release. We conclude (a) that human GRP has similar biologic effects as synthetic bombesin; (b) as GRP is localized exclusively in nerve tissue and has potent effects on different organs, it is a likely candidate for peptidergic control of human gastric, pancreatic and gallbladder functions.  相似文献   

2.
The present investigation was designed to perform a direct comparison of a rat pancreatic acini bioassay system and a specific CCK radioimmunoassay (antiserum G-160) for the measurement of fasting and meal-stimulated plasma CCK in the presence and absence of the CCK receptor antagonist loxiglumide. The G-160 CCK antiserum is directed against the C-terminal O-sulfated tyrosine residue of the CCK molecule which is essential for full bioactivity of CCK peptides. For plasma extraction prior to bioassay measurement, hydrophobic reverse-phase chromatography on octadecylsilane cartridges was employed and resulted in simultaneous adsorption and elution of both CCK peptides and loxiglumide with recoveries of 87.5 +/- 9% and 75.0 +/- 5.9%, respectively. In the absence of loxiglumide, fasting and meal-stimulated values for CCK-like bioactivity and CCK-immunoreactivity (IR-CCK) were nearly identical (basal values: 1-2 pmol/l; meal-stimulated plateau levels: 4-6 pmol/l). After intravenous infusion of loxiglumide (30 mg/kg/h for 10 min, 10 mg/kg/h thereafter), resulting in plasma steady state levels of 200-300 mumol/l, meal-stimulated CCK-like bioactivity was undetectable, whereas IR-CCK levels were augmented 6.5-fold. In the bioassay system, standard samples containing 50 mumol/l loxiglumide produced complete inhibition of acinar lipase release in response to 50 pmol/l synthetic CCK-8. We conclude, that postprandial circulating non-CCK-like factors do not contribute significantly to the direct receptor-mediated stimulation of exocrine pancreatic secretion. The good agreement of CCK-like bioactivity and IR-CCK levels in the absence of loxiglumide confirms the sensitive and specific recognition of bioactive CCK peptides by the G-160 antiserum and suggests that this antibody exerts binding characteristics probably similar to a pancreatic acinar receptor.  相似文献   

3.
A rat islet amyloid polypeptide (amylin), 37-residue peptide amide was synthesized by the Fmoc-based solid phase method and the biological activity of synthetic rat amylin on exocrine pancreas was evaluated for the first time in conscious rat. Amylin (1, 10 nmol/kg/h) stimulated pancreatic exocrine secretion and plasma gastrin concentration. CR-1409, a CCK receptor antagonist, did not change amylin-stimulated pancreatic secretion. However, omeprazole (proton pump inhibitor) and atropine inhibited amylin-stimulated pancreatic secretion. This study suggests that amylin may play a role in biological action in the exocrine pancreas possibly mediated by gastric acid hypersecretion.  相似文献   

4.
It has been suggested that mammalian gastrin-releasing peptide (GRP) and bombesin (BBS) might inhibit gastric secretion by a central nervous system action. The present investigations were intended to define the gastric effect and to look for an effect on the exocrine pancreas. Wistar male rats were provided with a chronic cannula allowing cerebroventricular injections in the 3rd ventricle, and with chronic gastric and/or pancreatic fistulas allowing the collection of gastric and/or pancreatic secretions in conscious animals. Both basal secretions were studied. Gastric secretion was stimulated with a 75 mg/kg s.c. injection of 2-deoxyglucose (2-dGlc). The dose range of bombesin was 0.01–1 μg (6–600 pmol) and GRP was 0.01–10 μg/rat (3.5 pmol to 3.5 nmol). A significant dose related decrease of basal gastric secretion was observed with the two peptides. The gastric acid response to 2-dGlc was inhibited by both peptides in a dose-related fashion and the reduction of gastric acid output mainly resulted from a decrease in the volume of gastric juice. The exocrine pancreatic secretion was also decreased by 30–55% after GRP but the BBS inhibitory effect was poorly dose-related. No significant difference was found after removal of gastric secretion, indicating that most of the pancreatic inhibition was independent of gastric secretion.  相似文献   

5.
A secretin releasing peptide exists in dog pancreatic juice   总被引:1,自引:0,他引:1  
Li P  Song Y  Lee KY  Chang TM  Chey WY 《Life sciences》2000,66(14):1307-1316
Canine pancreatic juice has been shown to stimulate exocrine pancreatic secretion in the dog. In the present study we investigated whether there is a secretin-releasing peptide in canine pancreatic juice. Pancreatic juice was collected from the dogs with Thomas gastric and duodenal cannulas while pancreatic secretion was stimulated by intravenous administration of secretin at 0.5 microg/kg/h and CCK-8 at 0.2 microg/kg/h, respectively. The pancreatic juice was separated into three different molecular weight (MW) fractions (Fr) by ultrafiltration (Fr 1; MW > 10,000, Fr 2; MW=10,000-4,000 and Fr 3; MW < 4,000), respectively. All the fractions were bioassayed in anesthetized rats. Fraction 3 dose-dependently and significantly stimulated pancreatic juice flow volume from 78.0% to 99.4% (p<0.05) and bicarbonate output from 128.9% to 202.1% (p<0.01), respectively. Plasma secretin concentration also increased from 1.2 +/- 0.5 pM to 5.0 +/- 0.8 pM and 6.0 +/- 1.0 pM (p<0.05). None of these fractions increased pancreatic protein secretion or plasma CCK level. The stimulatory effect of Fraction 3 on pancreatic secretion and the release of secretin was completely abolished by treatment with trypsin (1 mg/ml for 60 min at 37 degrees C) but not by heating (100 degrees C, 10 min). Intravenous injection of a rabbit anti-secretin serum, which rendered plasma secretin almost undetectable in rat plasma, also abolished Fr 3-stimulated pancreatic secretion of fluid and bicarbonate secretion. These observations suggest that a secretin-releasing peptide exists in the canine pancreatic juice. It is trypsin-sensitive and heat-resistant. This peptide may play a significant physiological role on the release of secretin and regulation of exocrine pancreatic secretion.  相似文献   

6.
This study was designed to determine the role of cholecystokinin (CCK) in the inhibition of gastric HCl secretion by duodenal peptone, fat and acid in dogs with chronic gastric and pancreatic fistulas. Intraduodenal instillation of 5% peptone stimulated both gastric HCl secretion and pancreatic protein secretion and caused significant increments in plasma gastrin and CCK levels. L-364,718, a selective antagonist of CCK-A receptors, caused further increase in gastric HCl and plasma gastrin responses to duodenal peptone but reduced the pancreatic protein outputs in these tests by about 75%. L-365,260, an antagonist of type B receptors, reduced gastric acid by about 25% but failed to influence pancreatic response to duodenal peptone. Addition of 10% oleate or acidification of peptone to pH 3.0 profoundly inhibited acid secretion while significantly increasing the pancreatic protein secretion and plasma CCK levels. Administration of L-364,718 reversed the fall in gastric HCl secretion and significantly attenuated pancreatic protein secretion in tests with both peptone plus oleate and peptone plus acid. Exogenous CCK infused i.v. in a dose (25 pmol/kg per h) that raised plasma CCK to the level similar to that achieved by peptone meal plus fat resulted in similar inhibition of gastric acid response to that attained with fat and this effect was completely abolished by the pretreatment with L-364,718. We conclude that CCK released by intestinal peptone meal, containing fat or acid, exerts a tonic inhibitory influence on gastric acid secretion and gastrin release through the CCK-A receptors.  相似文献   

7.
PP administration induces negative energy balance by suppressing food intake and gastric emptying while increasing energy expenditure in rodents. The mechanism of PP actions involves the changes in the expression of hypothalamic feeding-regulatory peptides and the activity of the vago-vagal and vago-sympathetic reflex arc. PP-overexpressing mice we developed exhibited the thin phenotype with decreased food intake and gastric emptying rate. Plasma cholecystokinin (CCK) concentrations were increased in the transgenic mice and CCK-1 receptor antagonist improved the anorexia of the animals. These results, together with the previous notion of PP as an anti-CCK hormone in pancreatic exocrine secretion and gallbladder contraction, indicate that PP-CCK interactions may be either antagonistic or synergistic and the transgenic mice may exhibit the mixed phenotype by overproduction of PP and CCK.  相似文献   

8.
Pancreatic secretion in rats is regulated by feedback inhibition of cholecystokinin (CCK) release by proteases in the gut lumen, but little is known about the role of gastric acid in this regulation. This study, carried out on conscious rats with large gastric fistulas (GF) and pancreatic fistulas, shows that diversion of pancreatic juice results in the progressive stimulation of pancreatic secretion only in rats with the GF closed. When the GF was kept open, the diversion resulted in only small increment in pancreatic secretion and this was accompanied by progressive increase in gastric acid outputs. Similar amounts of HCl instilled into the duodenum in rats with the GF open fully reproduced the increase in pancreatic secretion observed after the diversion of pancreatic juice. Pretreatment with omeprazole (15 mumol/kg) to suppress gastric acid secretion or with L-364,718 (5 mumol/kg) to antagonize CCK receptors in the diverted state, resulted in the decline in pancreatic secretion similar to that observed after opening the GF. CCK given s.c. (20-320 pmol/kg) failed to cause any significant rise in the post-diversion pancreatic secretion in rats with the GF closed, but stimulated this secretion dose-dependently when the GF was open. Camostate (6-200 mg/kg) in rats with pancreatic juice returned to the duodenum caused dose-dependent increase in pancreatic secretion, but after opening the GF or after omeprazole this increase was reduced by about 75%. This study provides evidence that gastric acid plays a crucial role in the pancreatic response to diversion of pancreatic juice or inhibition of luminal proteases, and that factors that eliminate gastric acid secretion reduce this response.  相似文献   

9.
The present study was undertaken to determine whether infusion of cholecystokinin (CCK) to plasma concentrations comparable to those found after a meal stimulates pancreatic enzyme secretion and gallbladder contraction. Plasma CCK concentrations were measured by radioimmunoassay using antibody T204, which binds to all carboxyl-terminal CCK-peptides containing the sulfated tyrosine region. Ingestion of a standardized test meal in 7 normal subjects induced significant increases in plasma CCK from 2.0 +/- 0.2 pmol/l to levels between 4.6 +/- 0.6 and 7.3 +/- 1.0 pmol/l (p less than 0.05-p less than 0.0005). Infusion of 2.5 pmol/kg X h CCK 33 resulted in significant increases in plasma CCK from 2.0 +/- 0.2 to 3.9 +/- 0.3 pmol/l (p less than 0.0005). This infusion of CCK induced significant increases in trypsin secretion from 0.5 +/- 0.1 to 1.4 +/- 0.2 KU/15 min (p less than 0.005) and in bilirubin output from 1.6 +/- 0.7 to 30.3 +/- 8.0 mumol/15 min (p less than 0.05). It is concluded that physiological plasma concentrations of CCK stimulate pancreatic enzyme secretion and gallbladder contraction in man.  相似文献   

10.
The effect of newly discovered pancreastatin on pancreatic secretion stimulated by a diversion of bile-pancreatic juice (BPJ) from the intestine was examined in the conscious rat. Exogenous pancreastatin infusion (20, 100 and 200 pmol/kg.h) inhibited pancreatic protein and fluid outputs during BPJ diversion in a dose-dependent manner. Pancreastatin did not affect plasma cholecystokinin (CCK) concentrations. Pancreastatin (100 pmol/kg.h) inhibited CCK-stimulated pancreatic secretion, but did not inhibit secretin-stimulated pancreatic secretion. Pancreastatin alone, however, did not affect basal pancreatic secretion. In contrast, pancreastatin (10(-10)-10(-7)M) did not suppress CCK-stimulated amylase release from isolated rat pancreatic acini. These results indicate that pancreastatin has an inhibitory action on exocrine function of the pancreas. This action may not be mediated by direct mechanisms and nor via an inhibition of CCK release. It is suggested that pancreastatin may play a role in the regulation of the intestinal phase of exocrine pancreatic secretion.  相似文献   

11.
The regulatory mechanisms of postprandial pancreatic hyperemia are not well characterized. The aim of this study is to clarify the role of cholecystokinin (CCK) in the intestinal phase of pancreatic circulation. Pancreatic, gastric, and intestinal blood flows were measured by ultrasound transit-time blood flowmeters in five conscious dogs. Pancreatic and gastric secretion and blood pressure were also monitored. Synthetic CCK octapeptide (CCK-8) or gastrin heptadecapeptide (gastrin-17) was infused intravenously, and milk was infused into the duodenum with or without loxiglumide, a specific CCK-A receptor antagonist. CCK-8 induced dose-related increases of pancreatic, but not gastric or intestinal, blood flow and protein secretion without affecting systemic blood pressure. Gastrin-17 did not affect pancreatic blood flow. An intraduodenal infusion of milk increased pancreatic and intestinal blood flows and pancreatic protein secretion. Loxiglumide completely inhibited pancreatic blood flow and protein responses to CCK-8 and milk but not the intestinal blood flow response. CCK is a potent and specific pancreatic vasodilator, with its effect mediated by CCK-A receptors. CCK plays an important role in the regulation of the intestinal phase of the pancreatic circulation in dogs.  相似文献   

12.
The effect of luminal ghrelin on pancreatic enzyme secretion in the rat   总被引:1,自引:0,他引:1  
Ghrelin, a 28-amino-acid peptide produced predominantly by oxyntic mucosa has been reported to affect the pancreatic exocrine function but the mechanism of its secretory action is not clear. The effects of intraduodenal (i.d.) infusion of ghrelin on pancreatic amylase outputs under basal conditions and following the stimulation of pancreatic secretion with diversion of pancreato-biliary juice (DPBJ) as well as the role of vagal nerve, sensory fibers and CCK in this process were determined. Ghrelin given into the duodenum of healthy rats at doses of 1.0 or 10.0 microg/kg increased pancreatic amylase outputs under basal conditions or following the stimulation of pancreatic secretion with DPBJ. Bilateral vagotomy as well as capsaicin deactivation of sensory fibers completely abolished all stimulatory effects of luminal ghrelin on pancreatic exocrine function. Pretreatment with lorglumide, a CCK(1) receptor blocker, reversed the stimulation of amylase release produced by intraduodenal application of ghrelin. Intraduodenal ghrelin at doses of 1.0 or 10.0 microg/kg increased plasma concentrations of CCK and ghrelin. In conclusion, ghrelin given into the duodenum stimulates pancreatic enzyme secretion. Activation of vagal reflexes and CCK release as well as central mechanisms could be implicated in the stimulatory effect of luminal ghrelin on the pancreatic exocrine functions.  相似文献   

13.
The stimulation of exocrine pancreatic secretion that has been attributed by Pavlov exclusively to various reflexes (nervism), was then found that it depend also on numerous enterohormones, especially cholecystokinin (CCK) and secretin, released by duodeno-jejunal mucosa and originally believed to act via an endocrine pathway. Recently, CCK and other enterohormones were found to stimulate the pancreas by excitation of sensory nerves and triggering vago-vagal and entero-pancreatic reflexes. Numerous neurotransmitters and neuropeptides released by enteric nervous system (ENS) of gut and pancreas have been also implicated in the regulation of exocrine pancreas. This article was designed to review the contribution of vagal nerves and entero-hormones, especially CCK and other enterohormones, involved in the control of appetitive behavior such as leptin and ghrelin and pancreatic polypeptide family (peptide YY and neuropeptide Y). Basal secretion shows periodic fluctuations with peals controlled by ENS and by motilin and Ach. Plasma ghrelin, that is considered as hunger hormone, increases under basal conditions, while plasma leptin falls to the lowest level. Postprandial pancreatic secretion, classically divided into cephalic, gastric and intestinal phases, involves predominantly CCK, which under physiological conditions acts almost entirely by activation of vago-vagal reflexes to stimulate the exocrine pancreas, being accompanied by the fall in plasma ghrelin and increase of plasma leptin, reflecting feeding behavior. We conclude that the major role in postprandial pancreatic secretion is played by vagus and gastrin in cephalic and gastric phases and by vagus in conjunction with CCK and secretin in intestinal phase. PP, PYY somatostatin, leptin and ghrelin that affect food intake appear to participate in the feedback control of postprandial pancreatic secretion via hypothalamic centers.  相似文献   

14.
Previous studies demonstrated that pancreatic enzyme secretion in rats is stimulated by the diversion of pancreatic juice from the duodenum or by the inhibition of pancreatic proteinases in the intestinal lumen but little attention has been paid to the role of gastric secretion in this stimulation. This study, carried out on conscious rats with large gastric (GF) and pancreatic fistulas, confirms that diversion of pancreatic juice in rats with the GF closed results in the progressive stimulation of pancreatic secretion reaching the maximum similar to that induced by exogenous CCK. When the GF was kept open, the diversion resulted in only small increment in pancreatic secretion and this was accompanied by progressive increase in gastric acid outputs. Similar amounts of HCl (25-400 mumol/h) instilled intraduodenally (i.d.) in rats with the GF open fully reproduced the increase in pancreatic secretion observed after the diversion of pancreatic juice and this effect was completely abolished by the pretreatment with L-364,718, a specific CCK receptor antagonist. Pretreatment with omeprazole to suppress completely gastric acid secretion in the diverted state resulted in a decline in pancreatic secretion similar to that observed after opening the GF. Camostate given in graded doses (6-200 mg/kg) either i.d. or s.c. in rats with pancreatic juice returned to the duodenum caused a dose-dependent increase in pancreatic secretion, but after opening the GF or after omeprazole this increase was reduced by about 50% while after L-364,718 it was abolished. This study provides evidence that gastric secretion plays an important role in the pancreatic response to diversion of pancreatic juice or inhibition of luminal proteinases (but not to feeding) and the elimination of gastric acid reduces this response.  相似文献   

15.
The present study examined and compared the effects of muscarinic blockade, beta-adrenergic blockade and immunoneutralization of the neuropeptide gastrin-releasing peptide (GRP) on distention-induced gastric acid secretion and gastrin release. In response to distention of rat stomachs with 0.9% NaCl, acid output rose from 3.5 +/- 0.5 mumol H+/30 min to 15.4 +/- 2.5 mumol H+/30 min (P less than 0.01). Intravenous administration of 4 mg/kg propranolol did not affect the acid secretory response to distention, however both 2 mg/kg atropine and 6 mg/kg pirenzepine significantly decreased gastric acid secretion by 44.8 +/- 7.8% and 40.9 +/- 5.7% (P less than 0.05), respectively. When specific antibodies to GRP were infused intravenously, the acid secretory response to distention was nearly abolished, decreasing to 5.1 +/- 0.8 mumol H+/30 min (P less than 0.01). In contrast to the effects on acid secretion, GRP antiserum did not significantly alter the gastrin release observed following distention. Results of these studies indicate that, under the conditions of these experiments, the acid secretory response to gastric distention may be independent of its effect on gastrin release. Although distention-induced gastric acid secretion may be partially governed by muscarinic pathways, the acid secretory response to distention in the rat appears to involve GRP-containing neurons.  相似文献   

16.
Thyrotropin-releasing hormone (TRH) immunoreactivity is distributed throughout the gastrointestinal tract and the pancreas. We have studied the effect of TRH on several gastrointestinal functions in intact, unanesthetized dogs. Intravenous TRH stimulated gastric action potentials (p<0.01) and transiently inhibited tetragastrin-stimulated gastric acid secretion (p<0.05). TRH had no effect on basal or secretin-stimulated pancreatic exocrine secretion. TRH did not alter water absorption in dogs with Thiry-Vella loops constructed from proximal jejunum.  相似文献   

17.
These experiments were performed to study the effect of oxytocin (OT) and it's specific receptor on gallbladder motility in rabbits. The fasted New Zealand white rabbits (2.0-2.5 kg) were anaesthetized by urethane (1 g/kg). The gallbladder pressure was recorded continuously to monitor the gallbladder motility. Systemic OT (0.01, 0.02, 0.04 mg/kg, iv) did not affect the gallbladder pressure, but dose-dependently increased the frequency of phasic contraction. Five min after OT administration (0.04 mg/kg, iv), the strength of phasic contraction increased to 0.23 +/- 0.08 mmHg/min (P < 0.01, n = 6). The gallbladder motility returned to normal 15 min later after OT treatment. Intravenous injection of atosiban (0.04 mg/kg, iv), an OT receptor antagonist, decreased the strength of gallbladder phasic contraction but did not affect gallbladder pressure. Pretreatment of atosiban (0.04 mg/kg, iv) completely abolished the systemic OT effect on gallbladder. Vasopressin (VP) (0.1 - 0.5 IU/kg, iv) dose-dependently decrease the gallbladder pressure but did not affect the phasic contraction. MK-329 (0.4 mg/kg, iv), the CCK-A receptor antagonist, L-365, 260 (0.4 mg/kg, iv), the CCK-B receptor antagonist and atropine (0.2 mg/kg, iv), the M receptor antagonist, did not affect the OT effect on gallbladder motility. We suggest that endogenous OT regulates gallbladder phasic contraction through specific OT receptor. This effect is independent of the peripheral CCK and M receptors.  相似文献   

18.
5-Hydroxytryptamine (serotonin, 5-HT) is a hormone and neurotransmitter regulating gastrointestinal functions. 5-HT receptors are widely distributed in gastrointestinal mucosa and the enteric nervous system. Duodenal acidification stimulates not only the release of both 5-HT and secretin but also pancreatic exocrine secretion. We investigated the effect of 5-HT receptor antagonists on the release of secretin and pancreatic secretion of water and bicarbonate induced by duodenal acidification in anesthetized rats. Both the 5-HT(2) receptor antagonist ketanserin and the 5-HT(3) receptor antagonist ondansetron at 1-100 microg/kg dose-dependently inhibited acid-induced increases in plasma secretin concentration and pancreatic exocrine secretion. Neither the 5-HT(1) receptor antagonists pindolol and 5-HTP-DP nor the 5-HT(4) receptor antagonist SDZ-205,557 affected acid-evoked release of secretin or pancreatic secretion. None of the 5-HT receptor antagonists affected basal pancreatic secretion or plasma secretin concentration. Ketanserin or ondansetron at 10 microg/kg or a combination of both suppressed the pancreatic secretion in response to intravenous secretin at 2.5 and 5 pmol x kg(-1) x h(-1) by 55-75%, but not at 10 pmol x kg(-1) x h(-1). Atropine (50 microg/kg) significantly attenuated the inhibitory effect of ketanserin on pancreatic secretion but not on the release of secretin. These observations suggest that 5-HT(2) and 5-HT(3) receptors mediate duodenal acidification-induced release of secretin and pancreatic secretion of fluid and bicarbonate. Also, regulation of pancreatic exocrine secretion through 5-HT(2) receptors may involve a cholinergic pathway in the rat.  相似文献   

19.
The effects of glucagon-(1-21)-peptide on pancreatic exocrine secretion and plasma glucose levels were studied and compared with those of native glucagon in anesthetized dogs. Intravenous bolus administration of 1 nmol or 10 nmol/kg of glucagon-(1-21)-peptide evoked a significant inhibition of secretin-stimulated pancreatic juice secretion and protein output in a dose-dependent manner, as equimolar doses of glucagon did. Native glucagon induced an immediate and transient increase in pancreatic juice volume, which was followed by a significant inhibition. However, glucagon-(1-21)-peptide showed only the inhibitory action. Glucagon-(1-21)-peptide had no effect on plasma glucose levels even when a dose of 10 nmol/kg was given. The results suggest that the N-terminal amino-acid residues of glucagon play an important role in the inhibition of pancreatic exocrine secretion.  相似文献   

20.
The aspartic acid residue at the penultimate position is known to be essential for the hormonal activity of CCK and gastrin on gastric acid secretion. This residue was successively replaced by beta-aspartic acid, beta-alanine, and glutamic acid in the C-terminal heptapeptide of CCK 27-33. The analogues obtained were tested on rat gastric acid secretion and for recognition by gastrin receptors. The replacement by beta-aspartic or beta-alanine decreased gastric secretion and gastrin receptor recognition. In contrast, replacement by glutamic acid affected these two parameters less. The nature of the N-blocking group (Boc or Z) also influenced these activities, Boc derivatives being more potent than Z derivatives. The results were compared to those previously obtained on pancreatic secretion and on stimulation of gall bladder contraction where the modifications were found capable of differentiating between cholecystokinin, pancreozymin and gastrin activities.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号