首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
玉米原料高产γ-聚谷氨酸优良菌株的选育及发酵条件优化   总被引:1,自引:0,他引:1  
以实验室筛选到的一株枯草芽孢杆菌(Bacillus subtilis)B-1为出发菌株,采用紫外诱变技术对出发菌株进行反复诱变,得到一株能够利用玉米原料生产γ-聚谷氨酸的优良高产菌株B-115,摇瓶发酵γ-聚谷氨酸的产量由原菌株的12.5g/L提高到19.5g/L。再以该菌株为研究对象利用响应面法进行碳源、氮源、谷氨酸钠、金属离子等发酵条件的优化实验,经48h摇瓶发酵,γ-聚谷氨酸产量达到40.98g/ L。  相似文献   

2.
γ-聚谷氨酸生产菌的选育及培养条件研究   总被引:2,自引:0,他引:2  
从土壤中筛选分离到1株γ聚谷氨酸的生产菌株yt102,初步鉴定为枯草芽孢杆菌;以此为出发菌株采用紫外线(UV)、亚硝基胍(NTG)进行复合诱变,获得1株γ聚谷氨酸高产突变株,突变株连续传代10次,发酵性能稳定;通过单因素和正交试验确定培养基的最佳组成,在最优条件下,γ聚谷氨酸的平均产量可达28.5 g/L。  相似文献   

3.
γ-聚谷氨酸在食品、化妆品、生物医药等领域具有广泛的应用,目前主要的生产菌株是谷氨酸依赖型菌株,在生产过程中需要添加谷氨酸作为前体,因而生产γ-聚谷氨酸的成本较高。文中主要研究从糖质原料一步法发酵合成γ-聚谷氨酸的生产工艺。首先,从产γ-聚谷氨酸的菌株枯草芽孢杆菌中克隆γ-聚谷氨酸合成酶的基因簇pgs BCA,在谷氨酸棒杆菌模式菌株ATCC13032中进行诱导型和组成型表达,结果显示,仅诱导型表达菌株可以积累γ-聚谷氨酸,产量为1.43 g/L。进一步对诱导条件进行优化,确定诱导时间为2 h,IPTG浓度为0.8 mmol/L,γ-聚谷氨酸产量为1.98g/L。在此基础上,在一株高产谷氨酸的谷氨酸棒杆菌F343中外源表达pgs BCA,对重组菌进行发酵,结果表明,在摇瓶发酵中γ-聚谷氨酸产量达到10.23g/L,在5L发酵罐中产量达到20.08g/L;继而对γ-聚谷氨酸进行分子量测定,结果显示,产自F343重组菌的γ-聚谷氨酸的重均分子量比产自枯草芽孢杆菌的提高34.77%。文中构建了一步法发酵糖质原料生产γ-聚谷氨酸的新途径,同时为开发其潜在应用奠定了基础。  相似文献   

4.
目的:研究透明颤菌血红蛋白基因(vgb)在产聚γ-谷氨酸(γ- PGA)的地衣芽孢杆菌ATCC9945a中的表达及对其生物量和产量的影响.方法:以大肠杆菌-枯草芽孢杆菌的穿梭表达载体pUBC19为骨架,构建含有枯草芽孢杆菌的组成型启动子P43和透明颤菌血红蛋白结构基因的穿梭表达载体pUBC19 - PV,并通过电击转化得到重组的产γ-PGA的地衣芽孢杆菌(B.licheniformis).一氧化碳差光谱验证重组B.licheniformis 中是否表达了有活性的血红蛋白.摇瓶发酵试验研究重组菌株和对照菌株生物量和发酵产物产量的变化.结果表明,重组菌株的生长明显比对照菌株快,但是γ - PGA的产量却比原始菌株低:在正常供氧时,其产量12.8g/L,比亲株产量21.7g/L下降了41%,贫氧环境下产量8.8g/L,比亲株产量12.8g/L降低了31%.结论:vgb 在重组菌株中表达了有活性的的透明颤菌血红蛋白,并可以促进细胞的生长,但聚谷氨酸的产量却有所下降.文章针对聚γ-谷氨酸产量的下降原因进行了讨论,并对下一步的工作提出了建议.  相似文献   

5.
【背景】γ-聚谷氨酸(poly-γ-glutamic acid,γ-PGA)产生菌多为枯草芽孢杆菌(Bacillus subtilis)、解淀粉芽孢杆菌(Bacillus amyloliquefaciens)、地衣芽孢杆菌(Bacillus licheniformis)等,而暹罗芽孢杆菌(Bacillus siamensis)相关研究较少。【目的】研究暹罗芽孢杆菌产γ-PGA的液体发酵条件。【方法】以自行分离的暹罗芽孢杆菌CAU83为出发菌株进行液体发酵,通过单因素试验和正交试验法研究了碳氮源、前体物质、发酵温度及pH对菌株生产γ-PGA的影响。【结果】经摇瓶优化,γ-PGA的最适碳源、氮源和前体物质分别为乳糖30g/L、酵母提取物5g/L和L-谷氨酸钠60 g/L,最适培养条件为发酵温度37℃和pH 7.0,γ-PGA产量由8.4 g/L提升至30.1 g/L,比优化前提高了260%。经分批补料发酵,60 h时γ-PGA产量最高为59.5 g/L,比摇瓶提高了98%,产率为0.99 g/(L·h)。所产γ-PGA分子量为3.8×106 Da,聚合度较高。【结论】...  相似文献   

6.
以产γ-聚谷氨酸(γ-PGA)枯草芽胞杆菌菌株SY-ND为出发菌株,采用新型常压室温等离子体技术对其进行诱变以期获得高产菌株,在诱变致死率为80%~98%的条件下,通过检测突变菌株发酵产γ-PGA的量,筛选得到一株高产菌株SY-ND-SFX029。通过正交试验优化得出最佳培养基条件为:蛋白胨8.0g·L-1、蔗糖45.0g·L-1、L-谷氨酸钠35.0g·L-1。依照该条件经过48h发酵,菌株SY-ND-SFX029的γ-PGA产量达35.3g·L-1,比出发菌株SY-ND的γ-PGA产量18.9g·L-1提高86.8%。  相似文献   

7.
高华  张艳丽  刘克为 《生物磁学》2009,(14):2637-2640,2605
目的:以枯草芽孢杆菌纳豆亚种为出发菌株,考察不同碳氮源及NaCl浓度、谷氨酸、种龄、接种量对微生物发酵产1-聚谷氨酸的影响,以提高γ-聚谷氨酸的产量。方法:该菌菌种活化后,接入种子培养基,于37℃、200r/min震荡培养18h,然后按2%接种量接入不同发酵培养基进行发酵培养。γ-聚谷氨酸分离纯化后,根据其产量筛选最适发酵培养基组成及发酵条件,并对产物进行分析测定。结果:①最佳碳氮源分别为葡萄糖、蛋白胨,NaCl浓度为30g/L、种龄15h、接种量3%,且需在培养基中添加谷氨酸。②该菌株在最适条件下发酵56h时,γ-聚谷氨酸产量达32.7g/L,凝胶渗透色谱分析其相对分子质量为426kDa,呈多分子质量聚集体形式。③γ-聚谷氨酸的合成与菌体生长并非完全同步。结论:γ-聚谷氨酸作为一种天然的、可生物降解的、对环境和人体无害的多聚物,可由微生物发酵合成,且在此适宜条件下产量较高。  相似文献   

8.
一株γ-聚谷氨酸合成菌的筛选与鉴定   总被引:1,自引:0,他引:1  
从土壤中筛选分离获得一株γ-聚谷氨酸合成菌PGS-1,经鉴定为枯草芽孢杆菌(Bacillus subtilis),在富含谷氨酸和葡萄糖的培养基中可大量合成γ-聚谷氨酸,摇瓶发酵产量达26 g/L,不同于大多文献报道的微生物合成的γ-聚谷氨酸具有较高的分子量,该菌株合成的γ-聚谷氨酸分子量较低(3×105-4×105 kD),分子量分布较窄,可适用于低分子量要求的应用领域,如作为药物的控缓释载体,值得深入开发研究。  相似文献   

9.
枯草杆菌 SBS液体发酵联产血栓溶解酶和γ-聚谷氨酸   总被引:1,自引:0,他引:1  
【目的】利用枯草芽胞杆菌(Bacillus subtilis SBS)进行联产血栓溶解酶和γ-聚谷氨酸研究【方法】本研究以实验室自行分离的Bacillus subtilis SBS为出发菌株,进行了液体发酵,通过正交实验研究了碳、氮源对血栓溶解酶和γ-聚谷氨酸联产的影响,并运用多种检测方法对产物进行了鉴定。【结果】在未添加谷氨酸的培养基中合成了γ-聚谷氨酸,表明该菌是非谷氨酸依赖型菌。合成血栓溶解酶的合适碳、氮源分别是可溶性淀粉和大豆蛋白胨,合成γ-聚谷氨酸的合适碳、氮源分别是蔗糖和NH4Cl。【结论】以蔗糖和大豆蛋白胨、NH4Cl分别作为碳源和氮源进行血栓溶解酶和γ-聚谷氨酸的联产。在蔗糖 10 g/L、大豆蛋白胨 20 g/L、NH4Cl 8 g/L时,血栓溶解酶酶活为 265±25 IU/mL,γ-聚谷氨酸产量为1.183±0.015 g/L,均接近了单独合成时的水平。  相似文献   

10.
γ-聚谷氨酸发酵培养基的Plackett-Burman法优化   总被引:1,自引:0,他引:1  
以一株γ-聚谷氨酸高产菌——地衣芽孢杆菌GIM-P10为试验菌株,采用逐因子实验法确定γ-聚谷氨酸合成考察因素的参考范围,再采用Plackett-Burman设计法进行培养基的优化,10个实验因子中筛选到四个显著影响因子:柠檬酸、谷氨酸、K2HPO4和MgSO4·7H2O。另外,综合评价实验结果,表明γ-聚谷氨酸的产量与多糖含量呈负向关系,与细胞干重呈正向关系。利用Plackett-Burman设计法发酵产γ-聚谷氨酸可高达21.27g/L,为基础培养基的2倍以上。  相似文献   

11.
γ-聚谷氨酸高产菌株筛选及发酵条件优化   总被引:9,自引:0,他引:9  
γ聚谷氨酸是一种生物可降解的高分子材料,可应用于多种领域,因此受到普遍重视。报道了以11株枯草芽孢杆菌菌株为培养菌株,用3种谷氨酸钠含量不同的培养基进行筛选获得1株γ聚谷氨酸高产菌株;再以该菌株为研究对象进行碳源、氮源、谷氨酸钠浓度、初始pH、接种量、通气量等发酵条件的优化实验,结果表明最佳发酵条件为:250ml三角烧瓶装液40ml,接种体积分数5%,麦芽糖50g/L,酵母膏10g/L,谷氨酸钠30g/L,NaCl10g/L,KH2PO45g/L,MgSO4·7H2O0.5g/L,初始pH6.0,发酵60h,此时γ聚谷氨酸产量最高,达到30.26g/L,比国外报道的20g/L的产量有显著提高。纯化后产物经红外光谱及核磁共振检测,鉴定为γ聚谷氨酸。  相似文献   

12.
采用谷氨酸棒杆菌S9114和枯草芽胞杆菌NTG-4在10 L自控发酵罐上进行混菌发酵,探索混菌发酵生产γ-聚谷氨酸的可行性并进行工艺优化。结果表明:温度、接种量、pH及溶氧对聚谷氨酸发酵有较大影响,发酵前期维持32℃,6 h提温至37℃变温控制,谷氨酸棒杆菌和枯草芽胞杆菌接种量分别为5%和0.5%,pH 7.0,溶氧20%最有利于γ-聚谷氨酸发酵,在此条件下发酵32 hγ-聚谷氨酸最高产量为38.3 g/L。  相似文献   

13.
从发酵制品中分离到一株不依赖谷氨酸作为发酵底物的高产菌株PGA-N, 通过形态、生理生化试验和遗传学研究, 确定PGA-N为地衣芽胞杆菌(Bacillus licheniformis)。根据该菌株的产生环境, 设计了无L-谷氨酸发酵基础培养基, 并对该培养基进行了碳氮源优化和菌种诱变筛选。PGA-N经过亚硝基胍和紫外线诱变筛选后得一突变株——PGA-N-C10, 其γ-PGA的产量提高到8.82 g/L。实验还考察了搅拌转速与细胞生物量、γ-PGA产量以及γ-PGA分子量之间的关系, 在搅拌速度为400 r/min时, γ-PGA产率可高达11.00 g/L。  相似文献   

14.
谷氨酰胺高产菌株的定向选育研究   总被引:2,自引:0,他引:2  
采用谷氨酸棒杆菌S9114为出发菌株,经γ-射线—硫酸二乙酯—γ-射线诱变,磺胺胍抗性筛选后,定向选育出1株高产菌株SH77。在适宜的条件下积累谷氨酰胺平均为38.9g/L,最大达39.3g/L,比出发林提高了3.81倍。该菌株在最优化代谢控制发酵工艺条件下,谷氨酰胺产量最高达56.2g/L。  相似文献   

15.
聚γ谷氨酸和2,3-丁二醇是两种重要的化合物,广泛运用于能源、医药、农业等领域。地衣芽胞杆菌WX-02具有同时合成聚γ谷氨酸和2,3-丁二醇的能力。优化了地衣芽胞杆菌WX-02联产聚γ谷氨酸和2,3-丁二醇的发酵培养基,并进行了50 L发酵罐小试放大。分批发酵结果显示,采用优化后的培养基,聚γ谷氨酸和2,3-丁二醇的产量分别为42.5 g/L和76.13 g/L,比优化前分别提高了26.5%和188%。在联产发酵中聚γ谷氨酸和2,3-丁二醇的产量能够分别达到单独合成这两种物质的水平,为工业化联产聚γ谷氨酸和2,3-丁二醇奠定了基础。  相似文献   

16.
响应面法优化枯草芽孢杆菌产γ-PGA的条件   总被引:1,自引:0,他引:1  
对枯草芽孢杆菌液体发酵产γ-聚谷氨酸[γ-poly(glutamic acid),γ-PGA]条件进行了优化。首先采用单因子实验筛选出最适碳源为玉米糖化液,氮源为蛋白胨和谷氨酸钠,无机盐为KH2PO4,MgCl,MnCl2和NaCl。在此基础上,利用Plackett-Burman设计对影响产量的12个因素进行评价,筛选出具有显著效应的因素蛋白胨、谷氨酸钠和NaCl。用最陡爬坡路径逼近最大产γ-PGA区域后,利用响应面中心组合设计对显著因素进行优化,得出蛋白胨、谷氨酸钠和NaCl的最佳质量分数分别为0.54%,8.13%和0.96%。优化后液体发酵液γ-PGA产量提高到29.00 g/L,比初始γ-PGA产量14.10 g/L提高了2倍。  相似文献   

17.
聚谷氨酸,是由微生物发酵产生的水溶性多聚氨基酸,分子量多分布在100~10 000 kD,因其具有水溶性和吸附性好,以及易降解等特点,多用于农业、环保、医药等领域。本研究以实验室自行筛选的一株产γ-聚谷氨酸的地衣芽孢杆菌为出发菌株,在10 L发酵罐上对接种量、转速、风量、pH、发酵时间等发酵条件进行优化研究,旨在提高γ-聚谷氨酸产量。实验结果表明,当设定初始发酵条件为接种量10%,初始转速220 r/min,通风量8 L/min,pH值7.4,发酵过程中对转速、发酵液pH、风量进行联动控制调整,在发酵20 h后上调转速到250 r/min,DO低于20%风量提高到10 L/min,发酵液pH值由7.4降低至6.0左右时,对流加浓度为20%的氨水进行pH调整控制,维持pH值在7.0,65 h后发酵结束,可明显提高γ-聚谷氨酸产量,由未优化控制条件前的8.9 g/L提高到21.6 g/L。因此,通过对转速、pH、通风量的协同联动调整,γ-聚谷氨酸的产量有了较大幅度提升,将为后期的扩大化生产奠定基础。  相似文献   

18.
目的:对海洋来源的具有产纤溶酶能力的枯草芽孢杆菌(Bacillus subtilis)LC6-1进行紫外诱变,得到高产且稳定的突变株PW6-3,对该突变株发酵产酶的条件进行优化。方法:采用单因素和正交试验进行发酵培养基组分和培养条件的优化。结果:突变株PW6-3的酶活力为(6 960.21 ± 85.51)U/mL,较原始菌株提高了30.48%。以PW6-3为出发菌株,采用单因素及正交试验的方法对菌株进行发酵培养基组分与培养条件优化,最终得到的最佳培养基组分是:玉米淀粉30 g/L,玉米浆干粉40 g/L,CaCl2 3 g/L;最佳发酵培养条件是:32℃,转速200 r/min,接种量3%,pH 6.5,种龄18 h,发酵培养时间66 h,最终菌株的酶活力稳定在(9 203.63 ± 67.85)U/mL。结论:发酵工艺优化后,菌株PW6-3纤溶酶产量较诱变之前的菌株LC6-1提高72.53%,且发酵工艺成本较低,具有较好的经济效益。  相似文献   

19.
以已筛选的1株产γ-多聚谷氨酸解淀粉芽胞杆菌C1为出发菌株,对其进行紫外线-亚硝基胍(NTG)复合诱变,并运用单因素试验和正交试验设计对诱变菌株的种子培养工艺进行优化。通过复合诱变选育得到1株能够稳定遗传的正突变菌株C1-6,其摇瓶发酵生产γ-PGA的产量由18.4 g/L提高到24.2 g/L,增加了31.5%,且传代8次后仍能保持稳定。通过单因子试验筛选到玉米粉和黄豆粉作为C1-6生长的C源和N源。正交试验后,C1-6在成分为K2HPO41.0 g/L、Mg SO40.5 g/L、黄豆粉15.0 g/L、玉米粉5.0 g/L,p H 6.5的培养基中,37℃、装液量1/5(150 m L三角瓶装液30 m L)的培养条件下可获得较大的生物量,OD600达到6.31。  相似文献   

20.
对具有发酵产α-酮戊二酸能力的解脂耶氏酵母(Yarrowia Lipolytica)ZY-4进行了紫外诱变和NTG诱变育种,筛选得到产量提高的突变株,并对突变株的发酵培养基进行了优化,结果表明,紫外诱变和NTG诱变后筛选到的突变株分别比原始出发菌株产量提高了67.8%和110%。优化后发酵培养基成分为甘油8%,氯化铵5.0 g/L,硫胺素1.0μg/L,磷酸二氢钾1.0 g/L,七水硫酸镁0.5 g/L,培养基优化后α-酮戊二酸产量比原始出发菌株提高了232.4%。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号