首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Mitochondrial fission ensures organelle inheritance during cell division and participates in apoptosis. The fission protein hFis1 triggers caspase-dependent cell death, by causing the release of cytochrome c from mitochondria. Here we show that mitochondrial fission induced by hFis1 is genetically distinct from apoptosis. In cells lacking the multidomain proapoptotic Bcl-2 family members Bax and Bak (DKO), hFis1 caused mitochondrial fragmentation but not organelle dysfunction and apoptosis. Similarly, a mutant in the intermembrane region of hFis1-induced fission but not cell death, further dissociating mitochondrial fragmentation from apoptosis induction. Selective correction of the endoplasmic reticulum (ER) defect of DKO cells restored killing by hFis1, indicating that death by hFis1 relies on the ER gateway of apoptosis. Consistently, hFis1 did not directly activate BAX and BAK, but induced Ca(2+)-dependent mitochondrial dysfunction. Thus, hFis1 is a bifunctional protein that independently regulates mitochondrial fragmentation and ER-mediated apoptosis.  相似文献   

2.
hFis1, a novel component of the mammalian mitochondrial fission machinery   总被引:25,自引:0,他引:25  
The balance between the fission and fusion mechanisms regulate the morphology of mitochondria. In this study we have identified a mammalian protein that we call hFis1, which is the orthologue of the yeast Fis1p known to participate in yeast mitochondrial division. hFis1, when overexpressed in various cell types, localized to the outer mitochondrial membrane and induced mitochondrial fission. This event was inhibited by a dominant negative mutant of Drp1 (Drp1(K38A)), a major component of the fission apparatus. Fragmentation of the mitochondrial network by hFis1 was followed by the release of cytochrome c and ultimately apoptosis. Bcl-xL was able to block cytochrome c release and apoptosis but failed to prevent mitochondrial fragmentation. Our studies show that hFis1 is part of the mammalian fission machinery and suggest that regulation of the fission processes might be involved in apoptotic mechanisms.  相似文献   

3.
During apoptosis, the mitochondrial network fragments. Using short hairpin RNAs for RNA interference, we manipulated the expression levels of the proteins hFis1, Drp1, and Opa1 that are involved in mitochondrial fission and fusion in mammalian cells, and we characterized their functions in mitochondrial morphology and apoptosis. Down-regulation of hFis1 powerfully inhibits cell death to an extent significantly greater than down-regulation of Drp1 and at a stage of apoptosis distinct from that induced by Drp1 inhibition. Cells depleted of Opa1 are extremely sensitive to exogenous apoptosis induction, and some die spontaneously by a process that requires hFis1 expression. Wild-type Opa1 may function normally as an antiapoptotic protein, keeping spontaneous apoptosis in check. However, if hFis1 is down-regulated, cells do not require Opa1 to prevent apoptosis, suggesting that Opa1 may be normally counteracting the proapoptotic action of hFis1. We also demonstrate in this study that mitochondrial fragmentation per se does not result in apoptosis. However, we provide further evidence that multiple components of the mitochondrial morphogenesis machinery can positively and negatively regulate apoptosis.  相似文献   

4.
The regulation of mitochondrial permeability transition (MPT) is essential for cell survival. Un-controlled opening of the MPT pore is often associated with cell death. Anti-death protein Bcl-2 can block MPT as assessed by the enhanced capacity of mitochondria to accumulate and retain Ca2+. We report here that two proteins of the mitochondrial fission machinery, dynamin-related protein (Drp1) and human mitochondrial fission protein (hFis1), have an antagonistic effect on Bcl-2. Drp1, with the assistance of hFis1, sensitizes cells to MPT by reducing the mitochondrial Ca2+ retention capacity (CRC). While the reduction of CRC by Drp1/hFis1 is linked to mitochondrial fission, the antagonism between Bcl-2 and Drp1 appears to be mediated by mutually exclusive interactions of the two proteins with hFis1. The complexity of protein–protein interactions demonstrated in the present study suggests that in addition to the previously described role of Bcl-2 in the control of apoptosis, Bcl-2 may also participate directly or indirectly in the regulation of mitochondrial fission.  相似文献   

5.
Dynamin-related protein 1 (DRP1) plays an important role in mitochondrial fission at steady state and during apoptosis. Using fluorescence recovery after photobleaching, we demonstrate that in healthy cells, yellow fluorescent protein (YFP)-DRP1 recycles between the cytoplasm and mitochondria with a half-time of 50 s. Strikingly, during apoptotic cell death, YFP-DRP1 undergoes a transition from rapid recycling to stable membrane association. The rapid cycling phase that characterizes the early stages of apoptosis is independent of Bax/Bak. However, after Bax recruitment to the mitochondrial membranes but before the loss of mitochondrial membrane potential, YFP-DRP1 becomes locked on the membrane, resulting in undetectable fluorescence recovery. This second phase in DRP1 cycling is dependent on the presence of Bax/Bak but independent of hFis1 and mitochondrial fragmentation. Coincident with Bax activation, we detect a Bax/Bak-dependent stimulation of small ubiquitin-like modifier-1 conjugation to DRP1, a modification that correlates with the stable association of DRP1 with mitochondrial membranes. Altogether, these data demonstrate that the apoptotic machinery regulates the biochemical properties of DRP1 during cell death.  相似文献   

6.
Mitochondrial morphology is controlled by two opposing processes: fusion and fission. Drp1 (dynamin-related protein 1) and hFis1 are two key players of mitochondrial fission, but how Drp1 is recruited to mitochondria and how Drp1-mediated mitochondrial fission is regulated in mammals is poorly understood. Here, we identify the vertebrate-specific protein MIEF1 (mitochondrial elongation factor 1; independently identified as MiD51), which is anchored to the outer mitochondrial membrane. Elevated MIEF1 levels induce extensive mitochondrial fusion, whereas depletion of MIEF1 causes mitochondrial fragmentation. MIEF1 interacts with and recruits Drp1 to mitochondria in a manner independent of hFis1, Mff (mitochondrial fission factor) and Mfn2 (mitofusin 2), but inhibits Drp1 activity, thus executing a negative effect on mitochondrial fission. MIEF1 also interacts with hFis1 and elevated hFis1 levels partially reverse the MIEF1-induced fusion phenotype. In addition to inhibiting Drp1, MIEF1 also actively promotes fusion, but in a manner distinct from mitofusins. In conclusion, our findings uncover a novel mechanism which controls the mitochondrial fusion-fission machinery in vertebrates. As MIEF1 is vertebrate-specific, these data also reveal important differences between yeast and vertebrates in the regulation of mitochondrial dynamics.  相似文献   

7.
Fzo1, a protein involved in mitochondrial fusion, inhibits apoptosis   总被引:1,自引:0,他引:1  
Mitochondrial morphology and physiology are regulated by the processes of fusion and fission. Some forms of apoptosis are reported to be associated with mitochondrial fragmentation. We showed that overexpression of Fzo1A/B (rat) proteins involved in mitochondrial fusion, or silencing of Dnm1 (rat)/Drp1 (human) (a mitochondrial fission protein), increased elongated mitochondria in healthy cells. After apoptotic stimulation, these interventions inhibited mitochondrial fragmentation and cell death, suggesting that a process involved in mitochondrial fusion/fission might play a role in the regulation of apoptosis. Consistently, silencing of Fzo1A/B or Mfn1/2 (a human homolog of Fzo1A/B) led to an increase of shorter mitochondria and enhanced apoptotic death. Overexpression of Fzo1 inhibited cytochrome c release and activation of Bax/Bak, as assessed from conformational changes and oligomerization. Silencing of Mfn or Drp1 caused an increase or decrease of mitochondrial sensitivity to apoptotic stimulation, respectively. These results indicate that some of the proteins involved in mitochondrial fusion/fission modulate apoptotic cell death at the mitochondrial level.  相似文献   

8.
Mitochondrial alterations have been associated with the cytotoxic effect of 6-hydroxydopamine (6-OHDA), a widely used neurotoxin to study Parkinson's disease. Herein we studied the potential effects of 6-OHDA on mitochondrial morphology in SH-SY5Y neuroblastoma cells. By immunofluorescence and time-lapse fluorescence microscopy we demonstrated that 6-OHDA induced profound mitochondrial fragmentation in SH-SY5Y cells, an event that was similar to mitochondrial fission induced by overexpression of Fis1p, a membrane adaptor for the dynamin-related protein 1 (DLP1/Drp1). 6-OHDA failed to induce any changes in peroxisome morphology. Biochemical experiments revealed that 6-OHDA-induced mitochondrial fragmentation is an early event preceding the collapse of the mitochondrial membrane potential and cytochrome c release in SH-SY5Y cells. Silencing of DLP1/Drp1, which is involved in mitochondrial and peroxisomal fission, prevented 6-OHDA-induced fragmentation of mitochondria. Furthermore, in cells silenced for Drp1, 6-OHDA-induced cell death was reduced, indicating that a block in mitochondrial fission protects SH-SY5Y cells against 6-OHDA toxicity. Experiments in mouse embryonic fibroblasts deficient in Bax or p53 revealed that both proteins are not essential for 6-OHDA-induced mitochondrial fragmentation. Our data demonstrate for the first time an involvement of mitochondrial fragmentation and Drp1 function in 6-OHDA-induced apoptosis.  相似文献   

9.
The number and morphology of mitochondria within a cell are precisely regulated by the mitochondrial fission and fusion machinery. The human protein, hFis1, participates in mitochondrial fission by recruiting the Drp1 into the mitochondria. Using short hairpin RNA, we reduced the expression levels of hFis1 in mammalian cells. Cells lacking hFis1 showed sustained elongation of mitochondria and underwent significant cellular morphological changes, including enlargement, flattening, and increased cellular granularity. In these cells, staining for acidic senescence-associated beta-galactosidase activity was elevated, and the rate of cell proliferation was greatly reduced, indicating that cells lacking hFis1 undergo senescence-associated phenotypic changes. Reintroduction of the hFis1 gene into hFis1-depleted cells restored mitochondrial fragmentation and suppressed senescence-associated beta-galactosidase activity. Moreover, depletion of both hFis1 and OPA1, a critical component of mitochondrial fusion, resulted in extensive mitochondrial fragmentation and markedly rescued cells from senescence-associated phenotypic changes. Intriguingly, sustained elongation of mitochondria was associated with decreased mitochondrial membrane potential, increased reactive oxygen species production, and DNA damage. The data indicate that sustained mitochondrial elongation induces senescence-associated phenotypic changes that can be neutralized by mitochondrial fragmentation. Thus, one of the key functions of mitochondrial fission might be prevention of the sustained extensive mitochondrial elongation that triggers cellular senescence.  相似文献   

10.
Mitochondrial morphology within cells is controlled by precisely regulated rates of fusion and fission . During programmed cell death (PCD), mitochondria undergo extensive fragmentation and ultimately caspase-independent elimination through a process known as mitoptosis . Though this increased fragmentation is due to increased fission through the recruitment of the dynamin-like GTPase Drp1 to mitochondria , as well as to a block in mitochondrial fusion , cellular mechanisms underlying these processes remain unclear. Here, we describe a mechanism for the increased mitochondrial Drp1 levels and subsequent stimulation of mitochondrial fission seen during PCD. We observed Bax/Bak-mediated release of DDP/TIMM8a, a mitochondrial intermembrane space (IMS) protein , into the cytoplasm, where it binds to and promotes the mitochondrial redistribution of Drp1, a mediator of mitochondrial fission. Using both loss- and gain-of-function assays, we also demonstrate that the Drp1- and DDP/TIMM8a-dependent mitochondrial fragmentation observed during PCD is an important step in mitoptosis, which in turn is involved in caspase-independent cell death. Thus, following Bax/Bak-mediated mitochondrial outer membrane permeabilization (MOMP), IMS proteins released comprise not only apoptogenic factors such as cytochrome c involved in caspase activation but also DDP/TIMM8a, which activates Drp1-mediated fission to promote mitochondrial fragmentation and subsequently elimination during PCD.  相似文献   

11.
Mitochondria modulate Ca(2+) signals by taking up, buffering, and releasing Ca(2+) at key locations near Ca(2+) release or influx channels. The role of such local interactions between channels and organelles is difficult to establish in living cells because mitochondria form an interconnected network constantly remodeled by coordinated fusion and fission reactions. To study the effect of a controlled disruption of the mitochondrial network on Ca(2+) homeostasis, we took advantage of hFis1, a protein that promotes mitochondrial fission by recruiting the dynamin-related protein, Drp1. hFis1 expression in HeLa cells induced a rapid and complete fragmentation of mitochondria, which redistributed away from the plasma membrane and clustered around the nucleus. Despite the dramatic morphological alteration, hFis1-fragmented mitochondria maintained a normal transmembrane potential and pH and took up normally the Ca(2+) released from intracellular stores upon agonist stimulation, as measured with a targeted ratiometric pericam probe. In contrast, hFis1-fragmented mitochondria took up more slowly the Ca(2+) entering across plasma membrane channels, because the Ca(2+) ions reaching mitochondria propagated faster and in a more coordinated manner in interconnected than in fragmented mitochondria. In parallel cytosolic fura-2 measurements, the capacitative Ca(2+) entry (CCE) elicited by store depletion was only marginally reduced by hFis1 expression. Regardless of mitochondria shape and location, disruption of mitochondrial potential with uncouplers or oligomycin/rotenone reduced CCE by approximately 35%. These observations indicate that close contact to Ca(2+) influx channels is not required for CCE modulation and that the formation of a mitochondrial network facilitates Ca(2+) propagation within interconnected mitochondria.  相似文献   

12.
Most cell death stimuli trigger the mitochondrial release of cytochrome c and other cofactors that induce caspase activation and ensuing apoptosis. Apoptosis is also associated with massive mitochondrial fragmentation and cristae remodeling. Dynamin-related protein 1 (Drp1), a protein of the mitochondrial fission machinery, has been reported to participate in apoptotic mitochondrial fragmentation. Several theories explaining the mechanisms of cytochrome c release have been proposed. One suggests that it relies on the activation of Drp1-mediated mitochondrial fission. Here, we report that downregulation of Drp1 inhibits fragmentation of the mitochondrial network and partially prevents the release of cytochrome c but fails to prevent the release of other mitochondrial factors such as second mitochondria-derived activator of caspase/direct IAP-binding protein with low pI, Omi/HtrA2, adenylate kinase 2 and deafness dystonia peptide/TIMM8a. An explanation for the prevention of cytochrome c release is provided by our observation that inhibiting Drp1-mediated mitochondrial fission prevents the mitochondrial release of soluble OPA1 that was proposed to regulate cristae remodeling and complete cytochrome c release during apoptosis. Finally, we observed that downregulation of Drp1 delays but does not inhibit apoptosis, suggesting that mitochondrial fragmentation is not a prerequisite for apoptosis.  相似文献   

13.
Mitochondrial fission and fusion are the main components mediating the dynamic change of mitochondrial morphology observed in living cells. While many protein factors directly participating in mitochondrial dynamics have been identified, upstream signals that regulate mitochondrial morphology are not well understood. In this study, we tested the role of intracellular Ca(2+) in regulating mitochondrial morphology. We found that treating cells with the ER Ca(2+)-ATPase inhibitor thapsigargin (TG) induced two phases of mitochondrial fragmentation. The initial fragmentation of mitochondria occurs rapidly within minutes dependent on an increase in intracellular Ca(2+) levels, and Ca(2+) influx into mitochondria is necessary for inducing mitochondrial fragmentation. The initial mitochondrial fragmentation is a transient event, as tubular mitochondrial morphology was restored as the Ca(2+) level decreased. We were able to block the TG-induced mitochondrial fragmentation by inhibiting mitochondrial fission proteins DLP1/Drp1 or hFis1, suggesting that increased mitochondrial Ca(2+) acts upstream to activate the cellular mitochondrial fission machinery. We also found that prolonged incubation with TG induced the second phase of mitochondrial fragmentation, which was non-reversible and led to cell death as reported previously. These results suggest that Ca(2+) is involved in controlling mitochondrial morphology via intra-mitochondrial Ca(2+) signaling as well as the apoptotic process.  相似文献   

14.
The mammalian dynamin-like protein DLP1/Drp1 has been shown to mediate both mitochondrial and peroxisomal fission. In this study, we have examined whether hFis1, a mammalian homologue of yeast Fis1, which has been shown to participate in mitochondrial fission by an interaction with DLP1/Drp1, is also involved in peroxisomal growth and division. We show that hFis1 localizes to peroxisomes in addition to mitochondria. Through differential tagging and deletion experiments, we demonstrate that the transmembrane domain and the short C-terminal tail of hFis1 is both necessary and sufficient for its targeting to peroxisomes and mitochondria, whereas the N-terminal region is required for organelle fission. hFis1 promotes peroxisome division upon ectopic expression, whereas silencing of Fis1 by small interfering RNA inhibited fission and caused tubulation of peroxisomes. These findings provide the first evidence for a role of Fis1 in peroxisomal fission and suggest that the fission machinery of mitochondria and peroxisomes shares common components.  相似文献   

15.
We find that Bax, a proapoptotic member of the Bcl-2 family, translocates to discrete foci on mitochondria during the initial stages of apoptosis, which subsequently become mitochondrial scission sites. A dominant negative mutant of Drp1, Drp1K38A, inhibits apoptotic scission of mitochondria, but does not inhibit Bax translocation or coalescence into foci. However, Drp1K38A causes the accumulation of mitochondrial fission intermediates that are associated with clusters of Bax. Surprisingly, Drp1 and Mfn2, but not other proteins implicated in the regulation of mitochondrial morphology, colocalize with Bax in these foci. We suggest that Bax participates in apoptotic fragmentation of mitochondria.  相似文献   

16.
The yeast protein Fis1p has been shown to participate in mitochondrial fission mediated by the dynamin-related protein Dnm1p. In mammalian cells, the dynamin-like protein DLP1/Drp1 functions as a mitochondrial fission protein, but the mechanisms by which DLP1/Drp1 and the mitochondrial membrane interact during the fission process are undefined. In this study, we have tested the role of a mammalian homologue of Fis1p, hFis1, and provided new and mechanistic information about the control of mitochondrial fission in mammalian cells. Through differential tagging and deletion experiments, we demonstrate that the intact C-terminal structure of hFis1 is essential for mitochondrial localization, whereas the N-terminal region of hFis1 is necessary for mitochondrial fission. Remarkably, an increased level of cellular hFis1 strongly promotes mitochondrial fission, resulting in an accumulation of fragmented mitochondria. Conversely, cell microinjection of hFis1 antibodies or treatment with hFis1 antisense oligonucleotides induces an elongated and collapsed mitochondrial morphology. Further, fluorescence resonance energy transfer and coimmunoprecipitation studies demonstrate that hFis1 interacts with DLP1. These results suggest that hFis1 participates in mitochondrial fission through an interaction that recruits DLP1 from the cytosol. We propose that hFis1 is a limiting factor in mitochondrial fission and that the number of hFis1 molecules on the mitochondrial surface determines fission frequency.  相似文献   

17.
Recent studies have shown mitochondrial fragmentation during cell stress and have suggested a role for the morphological change in mitochondrial injury and ensuing apoptosis. However, the underlying mechanism remains elusive. Here we demonstrate that mitochondrial fragmentation facilitates Bax insertion and activation in mitochondria, resulting in the release of apoptogenic factors. In HeLa cells, overexpression of mitofusins attenuated mitochondrial fragmentation during cisplatin- and azide-induced cell injury, which was accompanied by less apoptosis and less cytochrome c release from mitochondria. Similar effects were shown by inhibiting the mitochondrial fission protein Drp1 with a dominant negative mutant (dn-Drp1). Mitofusins and dn-Drp1 did not seem to significantly affect Bax translocation/accumulation to mitochondria; however, they blocked Bax insertion and activation in mitochondrial membrane. Consistently, in rat kidney proximal tubular cells, small interfering RNA knockdown of Drp1 prevented mitochondrial fragmentation during azide-induced ATP depletion, which was accompanied by less Bax activation, insertion, and oligomerization in mitochondria. These cells released less cytochrome c and AIF from mitochondria and showed significantly lower apoptosis. Finally, mitofusin-null mouse embryonic fibroblasts (MEF) had fragmented mitochondria. These MEFs were more sensitive to cisplatin-induced Bax activation, release of cytochrome c, and apoptosis. Together, this study provides further support for a role of mitochondrial fragmentation in mitochondrial injury and apoptosis. Mechanistically, mitochondrial fragmentation may sensitize the cells to Bax insertion and activation in mitochondria, facilitating the release of apoptogenic factors and consequent apoptosis.  相似文献   

18.
In this study, we have identified a novel mitochondrial ubiquitin ligase, designated MITOL, which is localized in the mitochondrial outer membrane. MITOL possesses a Plant Homeo-Domain (PHD) motif responsible for E3 ubiquitin ligase activity and predicted four-transmembrane domains. MITOL displayed a rapid degradation by autoubiquitination activity in a PHD-dependent manner. HeLa cells stably expressing a MITOL mutant lacking ubiquitin ligase activity or MITOL-deficient cells by small interfering RNA showed an aberrant mitochondrial morphology such as fragmentation, suggesting the enhancement of mitochondrial fission by MITOL dysfunction. Indeed, a dominant-negative expression of Drp1 mutant blocked mitochondrial fragmentation induced by MITOL depletion. We found that MITOL associated with and ubiquitinated mitochondrial fission protein hFis1 and Drp1. Pulse-chase experiment showed that MITOL overexpression increased turnover of these fission proteins. In addition, overexpression phenotype of hFis1 could be reverted by MITOL co-overexpression. Our finding indicates that MITOL plays a critical role in mitochondrial dynamics through the control of mitochondrial fission proteins.  相似文献   

19.
Mitochondrial fragmentation is recognized to be an important event during the onset of apoptosis. In this current study, we have used single cell imaging to investigate the role of the mitochondrial fission protein DRP‐1 on mitochondrial morphology and mitochondrial fragmentation in primary hippocampal neurons undergoing necrotic or apoptotic cell death. Treatment of neurons with 500 nM staurosporine (apoptosis) or 30 μM glutamate (l ‐Glu; excitotoxic necrosis) produced a fragmentation and condensation of mitochondria, which although occurred over markedly different time frames appeared broadly similar in appearance. In neurons exposed to an apoptotic stimuli, inhibiting DRP‐1 activity using overexpression of the dominant negative DRP‐1K38A slowed the rate of mitochondrial fragmentation and decreased total cell death when compared to overexpression of wild‐type DRP‐1. In contrast, responses to l ‐Glu appeared DRP‐1 independent. Similarly, alterations in the fission/fusion state of the mitochondrial network did not alter mitochondrial Ca2+ uptake or the ability of l ‐Glu to stimulate excitotoxic Ca2+ overload. Finally, apoptosis‐induced mitochondrial fragmentation was observed concurrent with recruitment of Bax to the mitochondrial membrane. In contrast, during glutamate excitotoxicity, Bax remained in the cytosolic compartment. We conclude that different pathways lead to the appearance of fragmented mitochondria during necrotic and apoptotic neuronal cell death. © 2010 Wiley Periodicals, Inc. J Biochem Mol Toxicol 24:335–341, 2010; View this article online at wileyonlinelibrary.com . DOI 10.1002/jbt.20336  相似文献   

20.
Mitochondrial fission in mammals is mediated by at least two proteins, DLP1/Drp1 and hFis1. DLP1 mediates the scission of mitochondrial membranes through GTP hydrolysis, and hFis1 is a putative DLP1 receptor anchored at the mitochondrial outer membrane by a C-terminal single transmembrane domain. The cytosolic domain of hFis1 contains six α-helices (α1-α6) out of which α2-α5 form two tetratricopeptide repeat (TPR) folds. In this study, by using chimeric constructs, we demonstrated that the cytosolic domain contains the necessary information for hFis1 function during mitochondrial fission. By using transient expression of different mutant forms of the hFis1 protein, we found that hFis1 self-interaction plays an important role in mitochondrial fission. Our results show that deletion of the α1 helix greatly increased the formation of dimeric and oligomeric forms of hFis1, indicating that α1 helix functions as a negative regulator of the hFis1 self-interaction. Further mutational approaches revealed that a tyrosine residue in the α5 helix and the linker between α3 and α4 helices participate in hFis1 oligomerization. Mutations causing oligomerization defect greatly reduced the ability to induce not only mitochondrial fragmentation by full-length hFis1 but also the formation of swollen ball-shaped mitochondria caused by α1-deleted hFis1. Our data suggest that oligomerization of hFis1 in the mitochondrial outer membrane plays a role in mitochondrial fission, potentially through participating in fission factor recruitment.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号