首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
A approximately 2.4-kb imprinting control region (ICR) regulates somatic monoallelic expression of the Igf2 and H19 genes. This is achieved through DNA methylation-dependent chromatin insulator and promoter silencing activities on the maternal and paternal chromosomes, respectively. In somatic cells, the hypomethylated maternally inherited ICR binds the insulator protein CTCF at four sites and blocks activity of the proximal Igf2 promoter by insulating it from its distal enhancers. CTCF binding is thought to play a direct role in inhibiting methylation of the ICR in female germ cells and in somatic cells and, therefore, in establishing and maintaining imprinting of the Igf2/H19 region. Here, we report on the effects of eliminating ICR CTCF binding by severely mutating all four sites in mice. We found that in the female and male germ lines, the mutant ICR remained hypomethylated and hypermethylated, respectively, showing that the CTCF binding sites are dispensable for imprinting establishment. Postfertilization, the maternal mutant ICR acquired methylation, which could be explained by loss of methylation inhibition, which is normally provided by CTCF binding. Adjacent regions in cis-the H19 promoter and gene-also acquired methylation, accompanied by downregulation of H19. This could be the result of a silencing effect of the methylated maternal ICR.  相似文献   

3.
Chromatin insulators of higher eukaryotes functionally divide the genome into active and inactive domains. Furthermore, insulators regulate enhancer/promoter communication, which is evident from the Drosophila bithorax locus in which a multitude of regulatory elements control segment specific gene activity. Centrosomal protein 190 (CP190) is targeted to insulators by CTCF or other insulator DNA-binding factors. Chromatin analyses revealed that insulators are characterized by open and nucleosome depleted regions. Here, we wanted to identify chromatin modification and remodelling factors required for an enhancer blocking function. We used the well-studied Fab-8 insulator of the bithorax locus to apply a genome-wide RNAi screen for factors that contribute to the enhancer blocking function of CTCF and CP190. Among 78 genes required for optimal Fab-8 mediated enhancer blocking, all four components of the NURF complex as well as several subunits of the dREAM complex were most evident. Mass spectrometric analyses of CTCF or CP190 bound proteins as well as immune precipitation confirmed NURF and dREAM binding. Both co-localise with most CP190 binding sites in the genome and chromatin immune precipitation showed that CP190 recruits NURF and dREAM. Nucleosome occupancy and histone H3 binding analyses revealed that CP190 mediated NURF binding results in nucleosomal depletion at CP190 binding sites. Thus, we conclude that CP190 binding to CTCF or to other DNA binding insulator factors mediates recruitment of NURF and dREAM. Furthermore, the enhancer blocking function of insulators is associated with nucleosomal depletion and requires NURF and dREAM.  相似文献   

4.
To reveal the extent of domain-wide epigenetic features at imprinted gene clusters, we performed a high-resolution allele-specific chromatin analysis of over 100 megabases along the maternally or paternally duplicated distal chromosome 7 (Chr7) and Chr15 in mouse embryo fibroblasts (MEFs). We found that reciprocal allele-specific features are limited to imprinted genes and their differentially methylated regions (DMRs), whereas broad local enrichment of H3K27me3 (BLOC) is a domain-wide feature at imprinted clusters. We uncovered novel allele-specific features of BLOCs. A maternally biased BLOC was found along the H19-Igf2 domain. A paternal allele-specific gap was found along Kcnq1ot1, interrupting a biallelic BLOC in the Kcnq1-Cdkn1c domain. We report novel allele-specific chromatin marks at the Peg13 and Slc38a4 DMRs, Cdkn1c upstream region, and Inpp5f_v2 DMR and paternal allele-specific CTCF binding at the Peg13 DMR. Additionally, we derived an imprinted gene predictor algorithm based on our allele-specific chromatin mapping data. The binary predictor H3K9ac and CTCF or H3K4me3 in one allele and H3K9me3 in the reciprocal allele, using a sliding-window approach, recognized with precision the parental allele specificity of known imprinted genes, H19, Igf2, Igf2as, Cdkn1c, Kcnq1ot1, and Inpp5f_v2 on Chr7 and Peg13 and Slc38a4 on Chr15. Chromatin features, therefore, can unequivocally identify genes with imprinted expression.  相似文献   

5.
Expression of imprinted genes is classically associated with differential methylation of specific CpG-rich DNA regions (DMRs). The H19/IGF2 locus is considered a paradigm for epigenetic regulation. In mice, as in humans, the essential H19 DMR--target of the CTCF insulator--is located between the two genes. Here, we performed a pyrosequencing-based quantitative analysis of its CpG methylation in normal human tissues. The quantitative analysis of the methylation level in the H19 DMR revealed three unexpected discrete, individual-specific methylation states. This epigenetic polymorphism was confined to the sixth CTCF binding site while a unique median-methylated profile was found at the third CTCF binding site as well as in the H19 promoter. Monoallelic expression of H19 and IGF2 was maintained independently of the methylation status at the sixth CTCF binding site and the IGF2 DMR2 displayed a median-methylated profile in all individuals and tissues analyzed. Interestingly, the methylation profile was genetically transmitted. Transgenerational inheritance of the H19 methylation profile was compatible with a simple model involving one gene with three alleles. The existence of three individual-specific epigenotypes in the H19 DMR in a non-pathological situation means it is important to reconsider the diagnostic value and functional importance of the sixth CTCF binding site.  相似文献   

6.
7.
8.
9.
10.
The 5' region of the H19 gene harbors a methylation-sensitive chromatin insulator within an imprinting control region (ICR). Insertional mutagenesis in combination with episomal assays identified nucleosome positioning sequences (NPSs) that set the stage for the remarkably precise distribution of the four target sites for the chromatin insulator protein CTCF to nucleosome linker sequences in the H19 ICR. Changing positions of the NPSs resulted in loss of both CTCF target site occupancy and insulator function, suggesting that the NPSs optimize the fidelity of the insulator function. We propose that the NPSs ensure the fidelity of the repressed status of the maternal Igf2 allele during development by constitutively maintaining availability of the CTCF target sites.  相似文献   

11.
The differentially methylated imprinting control region (ICR) region upstream of the H19 gene regulates allelic Igf2 expression by means of a methylation-sensitive chromatin insulator function. We have previously shown that maternal inheritance of mutated (three of the four) target sites for the 11-zinc finger protein CTCF leads to loss of Igf2 imprinting. Here we show that a mutation in only CTCF site 4 also leads to robust activation of the maternal Igf2 allele despite a noticeably weaker interaction in vitro of site 4 DNA with CTCF compared to other ICR sites, sites 1 and 3. Moreover, maternally inherited sites 1 to 3 become de novo methylated in complex patterns in subpopulations of liver and heart cells with a mutated site 4, suggesting that the methylation privilege status of the maternal H19 ICR allele requires an interdependence between all four CTCF sites. In support of this conclusion, we show that CTCF molecules bind to each other both in vivo and in vitro, and we demonstrate strong interaction between two CTCF-DNA complexes, preassembled in vitro with sites 3 and 4. We propose that the CTCF sites may cooperate to jointly maintain both methylation-free status and insulator properties of the maternal H19 ICR allele. Considering many other CTCF targets, we propose that site-specific interactions between various DNA-bound CTCF molecules may provide general focal points in the organization of looped chromatin domains involved in gene regulation.  相似文献   

12.
Imprinting of the mouse insulin-like growth factor 2 (Igf2) and H19 genes is regulated by an imprinting control region (ICR). The hypomethylated maternal copy functions as a chromatin insulator through the binding of CTCF and prevents Igf2 activation in cis, while hypermethylation of the paternal copy inactivates insulator function and leads to inactivation of H19 in cis. The specificity of the ICR sequence for mediating imprinting and chromatin insulation was investigated by substituting it for two copies of the chicken beta-globin insulator element, (Ch beta GI)(2), in mice. This introduced sequence resembles the ICR in size, and in containing CTCF-binding sites and CpGs, but otherwise lacks homology. On maternal inheritance, the (Ch beta GI)(2) was hypomethylated and displayed full chromatin insulator activity. Monoallelic expression of Igf2 and H19 was retained and mice were of normal size. These results suggest that the ICR sequence, aside from CTCF-binding sites, is not uniquely specialized for chromatin insulation at the Igf2/H19 region. On paternal inheritance, the (Ch beta GI)(2) was also hypomethylated and displayed strong insulator activity--fetuses possessed very low levels of Igf2 RNA and were greatly reduced in size, being as small as Igf2-null mutants. Furthermore, the paternal H19 allele was active. These results suggest that differential ICR methylation in the female and male germ lines is not acquired through differential binding of CTCF. Rather, it is likely to be acquired through a separate or downstream process.  相似文献   

13.
The H19/Igf2 imprinting control region (ICR) is a DNA methylation-dependent chromatin insulator in somatic cells. The hypomethylated maternally inherited ICR binds the insulator protein CTCF at four sites, and blocks activity of the proximal Igf2 promoter by insulating it from the shared distal enhancers. The hypermethylated paternally inherited ICR lacks CTCF binding and insulator activity, but induces methylation-silencing of the paternal H19 promoter. The paternal-specific methylation of the ICR is established in the male germ cells, while the ICR emerges from the female germ line in an unmethylated form. Despite several attempts to find cis-regulatory elements, it is still unknown what determines these male and female germ cell-specific epigenetic modifications. We recently proposed that five in vivo footprints spanning fifteen half nuclear hormone receptor (NHR) binding sites within the ICR might be involved, and here we report on the effects of mutagenizing all of these half sites in mice. No effect was obtained--in the female and male germ lines the mutant ICR remained hypomethylated and hypermethylated, respectively. The ICR imprinting mechanism remains undefined.  相似文献   

14.
15.
16.
Allele-specific DNA methylation (ASM) is well studied in imprinted domains, but this type of epigenetic asymmetry is actually found more commonly at non-imprinted loci, where the ASM is dictated not by parent-of-origin but instead by the local haplotype. We identified loci with strong ASM in human tissues from methylation-sensitive SNP array data. Two index regions (bisulfite PCR amplicons), one between the C3orf27 and RPN1 genes in chromosome band 3q21 and the other near the VTRNA2-1 vault RNA in band 5q31, proved to be new examples of imprinted DMRs (maternal alleles methylated) while a third, between STEAP3 and C2orf76 in chromosome band 2q14, showed non-imprinted haplotype-dependent ASM. Using long-read bisulfite sequencing (bis-seq) in 8 human tissues we found that in all 3 domains the ASM is restricted to single differentially methylated regions (DMRs), each less than 2kb. The ASM in the C3orf27-RPN1 intergenic region was placenta-specific and associated with allele-specific expression of a long non-coding RNA. Strikingly, the discrete DMRs in all 3 regions overlap with binding sites for the insulator protein CTCF, which we found selectively bound to the unmethylated allele of the STEAP3-C2orf76 DMR. Methylation mapping in two additional genes with non-imprinted haplotype-dependent ASM, ELK3 and CYP2A7, showed that the CYP2A7 DMR also overlaps a CTCF site. Thus, two features of imprinted domains, highly localized DMRs and allele-specific insulator occupancy by CTCF, can also be found in chromosomal domains with non-imprinted ASM. Arguing for biological importance, our analysis of published whole genome bis-seq data from hES cells revealed multiple genome-wide association study (GWAS) peaks near CTCF binding sites with ASM.  相似文献   

17.
18.
Parent-of-origin-specific expression of the mouse insulin-like growth factor 2 (Igf2) gene and the closely linked H19 gene are regulated by an intervening 2 kb imprinting control region (ICR), which displays parentspecific differential DNA methylation [1] [2]. Four 21 bp repeats are embedded within the ICR and are conserved in the putative ICR of human and rat Igf2 and H19, suggesting that the repeats have a function [3] [4]. Here, we report that prominent DNA footprints were found in vivo on the unmethylated maternal ICR at all four 21 bp repeats, demonstrating the presence of protein binding. The methylated paternal ICR displayed no footprints. Significantly, the maternal-specific footprints were localized to putative binding sites for CTCF, a highly conserved zinc-finger DNA-binding protein with multiple roles in gene regulation including that of chromatin insulator function [5] [6]. These results strongly suggest that the maternal ICR functions as an insulator element in regulating mutually exclusive expression of Igf2 and H19 in cis.  相似文献   

19.
20.
The DNA sequence elements called insulators have two basic kinds of properties. Barrier elements block the propagation of heterochromatic structures into adjacent euchromatin. Enhancer blocking elements interfere with interaction between an enhancer and promoter when placed between them. We have dissected a compound insulator element found at the 5' end of the chicken β-globin locus, which possesses both activities. Barrier insulation is mediated by two kinds of DNA binding proteins: USF1/USF2, a heterodimer which recruits multiple enzyme complexes capable of marking histone on adjacent nucleosomes with 'activating' marks, and Vezf1, which protects against DNA methylation. We have found that the heterochromatic region upstream of the insulator element is maintained in its silent state by a dicer-dependent mechanism, suggesting a mechanism for Vezf1 function in the insulator. Enhancer blocking function in the β-globin insulator element is conferred by a binding site for CTCF. Consistent with this property, CTCF binding was found some years ago to be essential for imprinted expression at the Igf2/H19 locus. Work in many laboratories has since demonstrated that CTCF helps stabilize long-range interactions in the nucleus. We have recently shown that in the case of the human insulin locus such an interaction, over a distance of ~300kb, can result in stimulation of a target gene which itself is important for insulin secretion. This article is part of a Special Issue entitled: Chromatin in time and space.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号