首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Airway smooth muscle is able to adapt and maintain a nearly constant maximal force generation over a large length range. This implies that a fixed filament lattice such as that found in striated muscle may not exist in this tissue and that plastic remodeling of its contractile and cytoskeletal filaments may be involved in the process of length adaptation that optimizes contractile filament overlap. Here, we show that isometric force produced by airway smooth muscle is independent of muscle length over a twofold length change; cell cross-sectional area was inversely proportional to cell length, implying that the cell volume was conserved at different lengths; shortening velocity and myosin filament density varied similarly to length change: increased by 69.4% ± 5.7 (SE) and 76.0% ± 9.8, respectively, for a 100% increase in cell length. Muscle power output, ATPase rate, and myosin filament density also have the same dependence on muscle cell length: increased by 35.4% ± 6.7, 34.6% ± 3.4, and 35.6% ± 10.6, respectively, for a 50% increase in cell length. The data can be explained by a model in which additional contractile units containing myosin filaments are formed and placed in series with existing contractile units when the muscle is adapted at a longer length. muscle contraction; myosin filaments; ATPase activity; electron microscopy  相似文献   

2.
The long functional range of some types of smooth muscle has been the subject of recent study. It has been proposed that the muscle filament lattice adapts to longer lengths by placing more filaments in series and that lattice plasticity is facilitated by myosin filament evanescence, with filaments dissociating during relaxation and reforming upon activation. Support for these dynamic changes in the filament lattice has been provided partly by changes in contractile parameters at different times in the contraction-relaxation cycle at different lengths. If the changes in contractile parameters result from filament formation and dissociation, these structural changes must occur on the time scale of tension development and relaxation. To assess whether thick-filament formation could account for the contractile changes, we measured birefringence continuously during activation and relaxation and compared these optical changes with the time course of force development and relaxation. Birefringence is a well-known property of muscle; striations in skeletal and cardiac muscle result from the A-bands being anisotropic, i.e., birefringent, and it is now known that this optical property is due to the presence of myosin thick filaments in the A-bands. Thus, the strength of birefringence is expected to represent the density of thick filaments. Here, we describe the principle of the method, the techniques for recording the optical signals, some initial results, and discuss the interpretation of results and some limitations of the method.  相似文献   

3.
A major development in smooth muscle research in recent years is the recognition that the myofilament lattice of the muscle is malleable. The malleability appears to stem from plastic rearrangement of contractile and cytoskeletal filaments in response to stress and strain exerted on the muscle cell, and it allows the muscle to adapt to a wide range of cell lengths and maintain optimal contractility. Although much is still poorly understood, we have begun to comprehend some of the basic mechanisms underlying the assembly and disassembly of contractile and cytoskeletal filaments in smooth muscle during the process of adaptation to large changes in cell geometry. One factor that likely facilitates the plastic length adaptation is the ability of myosin filaments to form and dissolve at the right place and the right time within the myofilament lattice. It is proposed herein that formation of myosin filaments in vivo is aided by the various filament-stabilizing proteins, such as caldesmon, and that the thick filament length is determined by the dimension of the actin filament lattice. It is still an open question as to how the dimension of the dynamic filament lattice is regulated. In light of the new perspective of malleable myofilament lattice in smooth muscle, the roles of many smooth muscle proteins could be assigned or reassigned in the context of plastic reorganization of the contractile apparatus and cytoskeleton.  相似文献   

4.
The phenomenon of length adaptation in airway smooth muscle (ASM) is well documented; however, the underlying mechanism is less clear. Evidence to date suggests that the adaptation involves reassembly of contractile filaments, leading to reconfiguration of the actin filament lattice and polymerization or depolymerization of the myosin filaments within the lattice. The time courses for these events are unknown. To gain insights into the adaptation process, we examined ASM mechanical properties and ultrastructural changes during adaptation. Step changes in length were applied to isolated bundles of ASM cells; changes in force, shortening velocity, and myosin filament mass were then quantified. A greater decrease in force was found following an acute decrease in length, compared with that of an acute increase in length. A decrease in myosin filament mass was also found with an acute decrease in length. The shortening velocity measured immediately after the length change was the same as that measured after the muscle had fully adapted to the new length. These observations can be explained by a model in which partial adaptation of the muscle leads to an intermediate state in which reconfiguration of the myofilament lattice occurred rapidly, followed by a relatively slow process of polymerization of myosin filaments within the lattice. The partially adapted intermediate state is perhaps more physiologically relevant than the fully adapted state seen under static conditions, and it simulates a more realistic behavior for ASM in vivo.  相似文献   

5.
Myosin thick filaments have been shown tobe structurally labile in intact smooth muscles. Although the mechanismof thick filament assembly/disassembly for purified myosins in solution has been well described, regulation of thick filament formation inintact muscle is still poorly understood. The present study investigates the effect of resting calcium level on thick filament maintenance in intact airway smooth muscle and on thick filament formation during activation. Cross-sectional density of the thick filaments measured electron microscopically showed that the density increased substantially (144%) when the muscle was activated. Theabundance of filamentous myosins in relaxed muscle was calcium sensitive; in the absence of calcium (with EGTA), the filament densitydeceased by 35%. Length oscillation imposed on the muscle underzero-calcium conditions produced no further reduction in the density.Isometric force and filament density recovered fully after reincubationof the muscle in normal physiological saline. The results suggest thatin airway smooth muscle, filamentous myosins exist in equilibrium withmonomeric myosins; muscle activation favors filament formation, and theresting calcium level is crucial for preservation of the filaments inthe relaxed state.

  相似文献   

6.
Length adaptation in airway smooth muscle (ASM) is attributed to reorganization of the cytoskeleton, and in particular the contractile elements. However, a constantly changing lung volume with tidal breathing (hence changing ASM length) is likely to restrict full adaptation of ASM for force generation. There is likely to be continuous length adaptation of ASM between states of incomplete or partial length adaption. We propose a new model that assimilates findings on myosin filament polymerization/depolymerization, partial length adaptation, isometric force, and shortening velocity to describe this continuous length adaptation process. In this model, the ASM adapts to an optimal force-generating capacity in a repeating cycle of events. Initially the myosin filament, shortened by prior length changes, associates with two longer actin filaments. The actin filaments are located adjacent to the myosin filaments, such that all myosin heads overlap with actin to permit maximal cross-bridge cycling. Since in this model the actin filaments are usually longer than myosin filaments, the excess length of the actin filament is located randomly with respect to the myosin filament. Once activated, the myosin filament elongates by polymerization along the actin filaments, with the growth limited by the overlap of the actin filaments. During relaxation, the myosin filaments dissociate from the actin filaments, and then the cycle repeats. This process causes a gradual adaptation of force and instantaneous adaptation of shortening velocity. Good agreement is found between model simulations and the experimental data depicting the relationship between force development, myosin filament density, or shortening velocity and length.  相似文献   

7.
At a similar meeting 10 years ago, we proposed (i) that the long functional range of some smooth muscles is accommodated by plastic alterations that place more myofilaments in series at longer lengths, (ii) that this plasticity is facilitated by myosin filament evanescence, with filaments dissociating partially during relaxation and reforming upon activation, and (iii) that filament lengthening during the rise of activation would cause velocity to fall. Since that meeting, we have accumulated a substantial body of evidence to support these proposals, as follows: (i) muscles develop nearly the same force when adapted to a range of lengths that can vary by 3-fold; (ii) other physiological parameters including shortening velocity, maximum power, compliance, ATPase rate, and thick-filament mass increase by about 2/3 for a doubling of muscle length; (iii) thick-filament density increases substantially during the rise of activation; and (iv) velocity falls as force rises during the rise of tetanic force, and when correction is made for differences in activation, velocity and force vary exactly in inverse proportion. This review explains the rationale for the different experimental measurements and their interpretation.  相似文献   

8.
Classic interpretations of the striated muscle length–tension curve focus on how force varies with overlap of thin (actin) and thick (myosin) filaments. New models of sarcomere geometry and experiments with skinned synchronous insect flight muscle suggest that changes in the radial distance between the actin and myosin filaments, the filament lattice spacing, are responsible for between 20% and 50% of the change in force seen between sarcomere lengths of 1.4 and 3.4 µm. Thus, lattice spacing is a significant force regulator, increasing the slope of muscle''s force–length dependence.  相似文献   

9.
Using newly developed nanofabricated cantilever force transducers, we have measured the mechanical properties of isolated thick filaments from the anterior byssus retractor muscle of the blue mussel Mytilus edulis and the telson levator muscle of the horseshoe crab Limulus polyphemus. The single thick filament specimen was suspended between the tip of a flexible cantilever and the tip of a stiff reference beam. Axial stress was placed on the filament, which bent the flexible cantilever. Cantilever tips were microscopically imaged onto a photodiode array to extract tip positions, which could be converted into force by using the cantilever stiffness value. Length changes up to 23% initial length (Mytilus) and 66% initial length (Limulus) were fully reversible and took place within the physiological force range. When stretch exceeded two to three times initial length (Mytilus) or five to six times initial length (Limulus), at forces approximately 18 nN and approximately 7 nN, respectively, the filaments broke. Appreciable and reversible strain within the physiological force range implies that thick-filament length changes could play a significant physiological role, at least in invertebrate muscles.  相似文献   

10.
In muscle, force emerges from myosin binding with actin (forming a cross-bridge). This actomyosin binding depends upon myofilament geometry, kinetics of thin-filament Ca2+ activation, and kinetics of cross-bridge cycling. Binding occurs within a compliant network of protein filaments where there is mechanical coupling between myosins along the thick-filament backbone and between actin monomers along the thin filament. Such mechanical coupling precludes using ordinary differential equation models when examining the effects of lattice geometry, kinetics, or compliance on force production. This study uses two stochastically driven, spatially explicit models to predict levels of cross-bridge binding, force, thin-filament Ca2+ activation, and ATP utilization. One model incorporates the 2-to-1 ratio of thin to thick filaments of vertebrate striated muscle (multi-filament model), while the other comprises only one thick and one thin filament (two-filament model). Simulations comparing these models show that the multi-filament predictions of force, fractional cross-bridge binding, and cross-bridge turnover are more consistent with published experimental values. Furthermore, the values predicted by the multi-filament model are greater than those values predicted by the two-filament model. These increases are larger than the relative increase of potential inter-filament interactions in the multi-filament model versus the two-filament model. This amplification of coordinated cross-bridge binding and cycling indicates a mechanism of cooperativity that depends on sarcomere lattice geometry, specifically the ratio and arrangement of myofilaments.  相似文献   

11.
Force-velocity curves measured at different times during tetani of sheep trachealis muscle were analyzed to assess whether velocity slowing could be explained by thick-filament lengthening. Such lengthening increases force by placing more cross bridges in parallel on longer filaments and decreases velocity by reducing the number of filaments spanning muscle length. From 2 s after the onset of stimulation, when force had achieved 42% of it final value, to 28 s, when force had been at its tetanic plateau for approximately 15 s, velocity decreases were exactly matched by force increases when force was adjusted for changes in activation, as assessed from the maximum power value in the force-velocity curves. A twofold change in velocity could be quantitatively explained by a series-to-parallel change in the filament lattice without any need to postulate a change in cross-bridge cycling rate.  相似文献   

12.
The effect of pH on the muscle filament lattice in skinned rabbit psoas fibers was studied by X-ray diffraction. In relaxed fibers, the intensity of the 11 equatorial reflection, I11, remained constant between pH 7.0 and pH 6.0 and fell markedly when the pH was decreased to 5.5. The intensity of the 10 reflection was almost constant over this pH range. These results indicate that the thick-filament lattice is more stable than that of the thin filaments, and that the thin filaments are positioned within the thick-filament lattice by a charge-dependent force. In rigor fibers, the decrease in I11 over this pH range was much smaller, which shows that the thin filament lattice can also be stabilized by the presence of actomyosin crossbridges. These conclusions were confirmed by electron microscopy. Thus, the thin filaments can be positioned in the trigonal positions of the thick-filament lattice by two different mechanisms, one electrostatic and the other steric.  相似文献   

13.
Using atomic force microscopy, we examined the contribution of cardiac myosin binding protein-C (cMyBP-C) to thick-filament length and flexural rigidity. Native thick filaments were isolated from the hearts of transgenic mice bearing a truncation mutation of cMyBP-C (t/t) that results in no detectable cMyBP-C and from age-matched wild-type controls (+/+). Atomic force microscopy images of these filaments were evaluated with an automated analysis algorithm that identified filament position and shape. The t/t thick-filament length (1.48 ± 0.02 μm) was significantly (P < 0.01) shorter than +/+ (1.56 ± 0.02 μm). This 5%-shorter thick-filament length in the t/t was reflected in 4% significantly shorter sarcomere lengths of relaxed isolated cardiomyocytes of the t/t (1.97 ± 0.01 μm) compared to +/+ (2.05 ± 0.01 μm). To determine if cMyBP-C contributes to the mechanical properties of thick filaments, we used statistical polymer chain mechanics to calculate a per-filament-specific persistence length, an index of flexural rigidity directly proportional to Young's modulus. Thick-filament-specific persistence length in the t/t (373 ± 62 μm) was significantly lower than in +/+ (639 ± 101 μm). Accordingly, Young's modulus of t/t thick filaments was ∼60% of +/+. These results provide what we consider a new understanding for the critical role of cMyBP-C in defining normal cardiac output by sustaining force and muscle stiffness.  相似文献   

14.
The structure of the cross-striated adductor muscle of the scallop has been studied by electron microscopy and X-ray diffraction using living relaxed, glycerol-extracted (rigor), fixed and dried muscles. The thick filaments are arranged in a hexagonal lattice whose size varies with sarcomere length so as to maintain a constant lattice volume. In the overlap region there are approximately 12 thin filaments about each thick filament and these are arranged in a partially disordered lattice similar to that found in other invertebrate muscles, giving a thin-to-thick filament ratio in this region of 6:1.The thin filaments, which contain actin and tropomyosin, are about 1 μm long and the actin subunits are arranged on a helix of pitch 2 × 38.5 nm. The thick filaments, which contain myosin and paramyosin, are about 1.76 μm long and have a backbone diameter of about 21 nm. We propose that these filaments have a core of paramyosin about 6 nm in diameter, around which the myosin molecules pack. In living relaxed muscle, the projecting myosin heads are symmetrically arranged. The data are consistent with a six-stranded helix, each strand having a pitch of 290 nm. The projections along the strands each correspond to the heads of one or two myosin molecules and occur at alternating intervals of 13 and 16 nm. In rigor muscle these projections move away from the backbone and attach to the thin filaments.In both living and dried muscle, alternate planes of thick filaments are staggered longitudinally relative to each other by about 7.2 nm. This gives rise to a body-centred orthorhombic lattice with a unit cell twice the volume of the basic filament lattice.  相似文献   

15.
Actin polymerization as part of the normal smooth muscle response to various stimuli has been reported. The actin dynamics are believed to be necessary for cytoskeletal remodeling in smooth muscle in its adaptation to external stress and strain and for maintenance of optimal contractility. We have shown in our previous studies in airway smooth muscle that myosins polymerized in response to contractile activation as well as to adaptation at longer cell lengths. We postulated that the same response could be elicited from actins under the same conditions. In the present study, actin filament formation was quantified electron microscopically in cell cross sections. Nanometer resolution allowed us to examine regional distribution of filaments in a cell cross section. Airway smooth muscle bundles were fixed in relaxed and activated states at two lengths; muscle preparations were also fixed after a period of oscillatory strain, a condition known to cause depolymerization of myosin filaments. The results indicate that contractile activation and increased cell length nonsynergistically enhanced actin polymerization; the extent of actin polymerization was substantially less than that of myosin polymerization. Oscillatory strain increased thin filament formation. Although thin filament density was found higher in cytoplasmic areas near dense bodies, contractile activation did not preferentially enhance actin polymerization in these areas. It is concluded that actin thin filaments are dynamic structures whose length and number are regulated by the cell in response to changes in extracellular environment and that polymerization and depolymerization of thin filaments occur uniformly across the whole cell cross section.  相似文献   

16.
Contraction of skeletal muscle is regulated by structural changes in both actin-containing thin filaments and myosin-containing thick filaments, but myosin-based regulation is unlikely to be preserved after thick filament isolation, and its structural basis remains poorly characterized. Here, we describe the periodic features of the thick filament structure in situ by high-resolution small-angle x-ray diffraction and interference. We used both relaxed demembranated fibers and resting intact muscle preparations to assess whether thick filament regulation is preserved in demembranated fibers, which have been widely used for previous studies. We show that the thick filaments in both preparations exhibit two closely spaced axial periodicities, 43.1 nm and 45.5 nm, at near-physiological temperature. The shorter periodicity matches that of the myosin helix, and x-ray interference between the two arrays of myosin in the bipolar filament shows that all zones of the filament follow this periodicity. The 45.5-nm repeat has no helical component and originates from myosin layers closer to the filament midpoint associated with the titin super-repeat in that region. Cooling relaxed or resting muscle, which partially mimics the effects of calcium activation on thick filament structure, disrupts the helical order of the myosin motors, and they move out from the filament backbone. Compression of the filament lattice of demembranated fibers by 5% Dextran, which restores interfilament spacing to that in intact muscle, stabilizes the higher-temperature structure. The axial periodicity of the filament backbone increases on cooling, but in lattice-compressed fibers the periodicity of the myosin heads does not follow the extension of the backbone. Thick filament structure in lattice-compressed demembranated fibers at near-physiological temperature is similar to that in intact resting muscle, suggesting that the native structure of the thick filament is largely preserved after demembranation in these conditions, although not in the conditions used for most previous studies with this preparation.  相似文献   

17.
Plasticity in canine airway smooth muscle   总被引:4,自引:0,他引:4       下载免费PDF全文
The large volume changes of some hollow viscera require a greater length range for the smooth muscle of their walls than can be accommodated by a fixed array of sliding filaments. A possible explanation is that smooth muscles adapt to length changes by forming variable numbers of contractile units in series. To test for such plasticity we examined the muscle length dependence of shortening velocity and compliance, both of which will vary directly with the number of thick filaments in series. Dog tracheal smooth muscle was studied because its cells are arrayed in long, straight, parallel bundles that span the length of the preparation. In experiments where muscle length was changed, both compliance and velocity showed a strong dependence on muscle length, varying by 1.7-fold and 2.2-fold, respectively, over a threefold range of length. The variation in isometric force was substantially less, ranging from a 1.2- to 1.3-fold in two series of experiments where length was varied by twofold to an insignificant 4% variation in a third series where a threefold length range was studied. Tetanic force was below its steady level after both stretches and releases, and increased to a steady level with 5-6 tetani at 5 min intervals. These results suggest strongly that the number of contractile units in series varies directly with the adapted muscle length. Temporary force depression after a length change would occur if the change transiently moved the filaments from their optimum overlap. The relative length independence of the adapted force is explained by the reforming of the filament lattice to produce optimum force development, with commensurate changes of velocity and compliance.  相似文献   

18.
Summary The presence and distribution pattern of paramyosin have been examined in different invertebrate muscle cell types by means of Western blot analysis and electron microscopy immunogold labelling. the muscles studied were: transversely striated muscle with continuous Z lines (flight muscle fromDrosophila melanogaster), transversely striated muscle with discontinuous Z lines (heart muscle from the snailHelix aspersa), obliquely striated body wall muscle from the earthwormEisenia foetida, and smooth muscles (retractor muscle from the snail and pseudoheart outer muscular layer from the earthworm). Paramyosin-like immunoreactivity was localized in thick filaments of all muscles studied. Immunogold particle density was similar along the whole thick filament length in insect flight muscle but it predominated in filament tips of fusiform thick filaments in both snail heart and earthworm body wall musculature when these filaments were observed in longitudinal sections. In obliquely sectioned thick filaments, immunolabelling was more abundant at the sites where filaments disappeared from the section. These results agree with the notion that paramyosin extended along the whole filament length, but that it can only be immunolabelled when it is not covered by myosin. In all muscles examined, immunolabelling density was lower in cross-sectioned myofilaments than in longitudinally sectioned myofilaments. This suggests that paramyosin does not form a continuous filament. The results of a semiquantitative analysis of paramyosin-like immunoreactivity indicated that it was more abundant in striated than in smooth muscles, and that, within striated muscles, transversely striated muscles contain more paramyosin than obliquely striated muscles.  相似文献   

19.
It is believed that the contractile filaments in smooth muscle are organized into arrays of contractile units (similar to the sarcomeric structure in striated muscle), and that such an organization is crucial for transforming the mechanical activities of actomyosin interaction into cell shortening and force generation. Details of the filament organization, however, are still poorly understood. Several models of contractile filament architecture are discussed here. To account for the linear relationship observed between the force generated by a smooth muscle and the muscle length at the plateau of an isotonic contraction, a model of contractile unit is proposed. The model consists of 2 dense bodies with actin (thin) filaments attached, and a myosin (thick) filament lying between the parallel thin filaments. In addition, the thick filament is assumed to span the whole contractile unit length, from dense body to dense body, so that when the contractile unit shortens, the amount of overlap between the thick and thin filaments (i.e., the distance between the dense bodies) decreases in exact proportion to the amount of shortening. Assembly of the contractile units into functional contractile apparatus is assumed to involve a group of cells that form a mechanical syncytium. The contractile apparatus is assumed malleable in that the number of contractile units in series and in parallel can be altered to accommodate strains on the muscle and to maintain the muscle's optimal mechanical function.  相似文献   

20.
Phosphorylation of the20-kDa regulatory myosin light chain (MLC) of smooth muscle is known tocause monomeric myosins in solution to self-assemble into thickfilaments. The role of MLC phosphorylation in thick filament formationin intact muscle, however, is not clear. It is not known whether thephosphorylation is necessary to initiate thick filament assembly invivo. Here we show, by using a potent inhibitor of MLC kinase(wortmannin), that the MLC phosphorylation and isometric force intrachealis muscle could be abolished without affecting calciumtransients. By measuring cross-sectional densities of the thickfilaments electron microscopically, we also show that inhibition of MLC phosphorylation alone did not cause disassembly of the filaments. Theunphosphorylated thick filaments, however, partially dissolved when themuscle was subjected to oscillatory strains (which caused a 25%decrease in the thick filament density). The postoscillation filamentdensity recovered to the preoscillation level only when wortmannin wasremoved and the muscle was stimulated. The data suggest that in vivothick filament reassembly after mechanical perturbation is facilitatedby the cyclic MLC phosphorylation associated with repeated stimulation.

  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号