首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
During development, changes occur in both the sites of erythropoiesis and the globin genes expressed at each developmental stage. Previous work has shown that high-level expression of human β-like globin genes in transgenic mice requires the presence of the locus control region (LCR). Models of hemoglobin switching propose that the LCR and/or stage-specific elements interact with globin gene sequences to activate specific genes in erythroid cells. To test these models, we generated transgenic mice which contain the human Aγ-globin gene linked to a 576-bp fragment containing the human β-spectrin promoter. In these mice, the β-spectrin Aγ-globin (βsp/Aγ) transgene was expressed at high levels in erythroid cells throughout development. Transgenic mice containing a 40-kb cosmid construct with the micro-LCR, βsp/Aγ-, ψβ-, δ-, and β-globin genes showed no developmental switching and expressed both human γ- and β-globin mRNAs in erythroid cells throughout development. Mice containing control cosmids with the Aγ-globin gene promoter showed developmental switching and expressed Aγ-globin mRNA in yolk sac and fetal liver erythroid cells and β-globin mRNA in fetal liver and adult erythroid cells. Our results suggest that replacement of the γ-globin promoter with the β-spectrin promoter allows the expression of the β-globin gene. We conclude that the γ-globin promoter is necessary and sufficient to suppress the expression of the β-globin gene in yolk sac erythroid cells.  相似文献   

2.
In order to investigate the polymorphism of α-globin chain of hemoglobin amongst caprines, the linked Iα and IIα globin genes of Barbary sheep (Ammotragus lervia), goat (Capra hircus), European mouflon (Ovis aries musimon), and Cyprus mouflon (Ovis aries ophion) were completely sequenced, including the 5′ and 3′ untranslated regions. European and Cyprus mouflons, which do not show polymorphic α globin chains, had almost identical α globin genes, whereas Barbary sheep exhibit two different chains encoded by two nonallelic genes. Four different α genes were observed and sequenced in goat, validating previous observations of the existence of allelic and nonallelic polymorphism. As in other vertebrates, interchromosomal gene conversion appears to be responsible for such polymorphism. Evaluation of nucleotide sequences at the level of molecular evolution of the Iα-globin gene family in the caprine taxa suggests a closer relationship between the genus Ammotragus and Capra. Molecular clock estimates suggest sheep-mouflon, goat-aoudad, and ancestor-caprine divergences of 2.8, 5.7, and 7.1 MYBP, respectively.  相似文献   

3.
GET Recombination, a simple inducible homologous recombination system for Escherichia coli, was used to target insertion of an EGFP cassette between the start and termination codons of the β-globin gene in a 200 kb BAC clone. The high degree of homology between the promoter regions of the β- and δ-globin genes also allowed the simultaneous generation of a δ-globin reporter construct with the deletion of 8.8 kb of intervening sequences. Both constructs expressed EGFP after transient transfection of MEL cells. Similarly, targeting of the EGFP cassette between the promoter regions of the γ-globin genes and the termination codon of the β-globin gene enabled the generation of reporter constructs for both Aγ- and Gγ-globin genes, involving specific deletions of 24 and 29 kb of genomic sequence, respectively. Finally the EGFP cassette was also inserted between the - and β-globin genes, with the simultaneous deletion of 44 kb of intervening sequence. The modified constructs were generated at high efficiency, illustrating the usefulness of GET Recombination to generate large deletions of specific sequences in BACs for functional studies. The establishment of stable erythropoietic cell lines with these globin constructs will facilitate the search for therapeutic agents that modify the expression of the individual globin genes in a physiologically relevant manner.  相似文献   

4.
5.
6.
《Genomics》1995,29(3)
We have determined the cDNA and genomic structure of a gene (−14 gene) that lies adjacent to the human α-globin cluster. Although it is expressed in a wide range of cell lines and tissues, a previously described erythroid-specific regulatory element that controls expression of the α-globin genes lies within intron 5 of this gene. Analysis of the −14 gene promoter shows that it is GC rich and associated with a constitutively expressed DNase 1 hypersensitive site; unlike the α-globin promoter, it does not contain a TATA or CCAAT box. These and other differences in promoter structure may explain why the erythroid regulatory element interacts specifically with the α-globin promoters and not the −14 gene promoter, which lies between the α promoters and their regulatory element. Interspecies comparisons demonstrate that the sequence and location of the −14 gene adjacent to the α cluster have been maintained since the bird/mammal divergence, 270 million years ago.  相似文献   

7.
The structural elucidation of 1′,2′-dideacetylboronolide, 5,6-dihydro-6-(3′-acetoxy-1′,2′-dihydroxyheptyl)2-pyrone, a new α-pyrone isolated from the leaves of Iboza riparia has been performed. Additionally, three sterols, sitosterol, stigmasterol and campesterol, have been identified in this species.  相似文献   

8.
9.
Whether drug-selectable genes can influence expression of the β-globin gene linked to its LCR was assessed here. With the tkNeo gene placed in cis and used to select transfected cells, the β-globin gene was expressed fourfold lower when it was positioned upstream of the LCR rather than downstream. This difference did not occur when the pgkPuro gene replaced tkNeo. Moreover, the β-globin gene situated upstream of the LCR was transcribed without position effects when it was cotransfected with a pgkPuro-containing plasmid, whereas cotransfection with a tkNeo plasmid gave measurable position effects. Previous results from transfected cells selected via a linked tkNeo gene suggested that the 3′ end of the β-globin gene has no impact on LCR-enhanced expression. Here, removal of the 3′ end of the β-globin gene resulted in lower and much more variable expression in both transgenic mice and cells cotransfected with pgkPuro. Together, the results suggest that tkNeo, but not pgkPuro, can strongly influence expression of the β-globin gene linked to its LCR. The findings could partly explain why data on β-globin gene regulation obtained from transfected cells have often not agreed with those obtained using transgenic mice. Hence, one must be careful in choosing a drug-selectable gene for cell transfection studies.  相似文献   

10.
An α- -fucosidase from porcine liver produced α- -Fuc-(1→2)-β- -Gal-(1→4)- -GlcNAc (2′-O-α- -fucosyl-N-acetyllactosamine, 1) together with its isomers α- -Fuc-(1→3)-β- -Gal-(1→4)- -GlcNAc (2) and α- -Fuc-(1→6)-β- -Gal-(1→4)- -GlcNAc (3) through a transglycosylation reaction from p-nitrophenyl α- -fucopyranoside and β- -Gal-(1→4)- -GlcNAc. The enzyme formed the trisaccharides 13 in 13% overall yield based on the donor, and in the ratio of 40:37:23. In contrast, transglycosylation by Alcaligenes sp. α- -fucosidase led to the regioselective synthesis of trisaccharides containing a (1→3)-linked α- -fucosyl residue. When β- -Gal-(1→4)- -GlcNAc and lactose were acceptors, the enzyme formed regioselectively compound 2 and α- -Fuc-(1→3)-β- -Gal-(1→4)- -Glc (3′-O-α- -fucosyllactose, 4), respectively, in 54 and 34% yields, based on the donor.  相似文献   

11.
A cDNA for α-globin mRNA of the carp, Cyprinus carpio, was cloned by the method of Okayama and Berg (Mol. Cell. Biol. 2 (1982) 161–170) and its complete nucleotide sequence was determined. The 5′ non-coding region contained 23 nucleotides. Following this region, there was an open reading frame encoded with an α-globin polypeptide consisting of 142 amino acids. The 3′ non-coding region was 88 nucleotides in length, including two copies of the hexanucleotide AATAAA and a poly(A) site of the GC dinucleotide. There were 16 discrepancies between the reported amino acid sequence of the carp α-globin chain and the amino acid sequence predicted from the DNA sequence of the clone. The possible explanations for these differences in amino acid sequence are discussed.  相似文献   

12.
We have identified the first gene lying on the centromeric side of the α-globin gene cluster on human 16p13.3. The gene, called 16pHQG;16 (HGMW-approved symbol LUC7L), is widely transcribed and lies in the opposite orientation with respect to the α-globin genes. This gene may represent a mammalian heterochromatic gene, encoding a putative RNA-binding protein similar to the yeast Luc7p subunit of the U1 snRNP splicing complex that is normally required for 5′ splice site selection. To examine the role of the 16pHQG;16 gene in delimiting the extent of the α-globin regulatory domain, we mapped its mouse orthologue, which we found to lie on mouse chromosome 17, separated from the mouse α-cluster on chromosome 11. Establishing the full extent of the human 16pHQG;16 gene has allowed us to define the centromeric limit of the region of conserved synteny around the human α-globin cluster to within an 8-kb segment of chromosome 16.  相似文献   

13.
The mouse β-globin gene cluster is regulated, at least in part, by a locus control region (LCR) composed of several developmentally stable DNase I hypersensitive sites located upstream of the genes. In this report, we examine the level of expression of the βmin and βmaj genes in adult mice in which HS2, HS3, or HS5,6 has been either deleted or replaced by a selectable marker via homologous recombination in ES cells. Primer extension analysis of RNA extracted from circulating reticulocytes and HPLC analysis of globin chains from peripheral red blood cells revealed that all mutations that reduce the overall output of the locus preferentially decrease βmin expression over βmaj. The implications of these findings for the mechanism by which the LCR controls expression of the βmaj and βmin promoters are discussed.  相似文献   

14.
We have microinjected DNA containing the inducible mouse metallothionein-I (MT-I) promoter, coupled to the structural gene for Escherichia coli β-galactosidase (lacZ), into the pronuclei of one-cell mouse embryos. A qualitative histochemical assay, with 5-bromo-4-chloro-3-indolylβ- -galactopyranoside (X-Gal) as a substrate, was used to detect expression of lacZ at several preimplantation stages. We observed staining indicative of exogenous β-galactosidase activity in 5–17% of DNA-injected embryos assayed at preimplantation stages after 16–24 h treatment with ZnSO4. Thus, lacZ can be used as an indicator gene for promoter function during early mouse embryogenesis, and the incorporation of the MT-I promoter into fusion genes can be a useful means of controlling the expression of exogenous genes in preimplantation mouse embryos.  相似文献   

15.
Comparative evolutionary analyses of gene families among divergent lineages can provide information on the order and timing of major gene duplication events and evolution of gene function. Here we investigate the evolutionary history of the α-globin gene family in mammals by isolating and characterizing α-like globin genes from an Australian marsupial, the tammar wallaby, Macropus eugenii. Sequence and phylogenetic analyses indicate that the tammar α-globin family consists of at least four genes including a single adult-expressed gene (α), two embryonic/neonatally expressed genes (ζ and ζ′), and θ-globin, each orthologous to the respective α-, ζ-, and θ-globin genes of eutherian mammals. The results suggest that the θ-globin lineage arose by duplication of an ancestral adult α-globin gene and had already evolved an unusual promoter region, atypical of all known α-globin gene promoters, prior to the divergence of the marsupial and eutherian lineages. Evolutionary analyses, using a maximum likelihood approach, indicate that θ-globin, has evolved under strong selective constraints in both marsupials and the lineage leading to human θ-globin, suggesting a long-term functional status. Overall, our results indicate that at least a four-gene cluster consisting of three α-like and one β-like globin genes linked in the order 5′–ζ–α–θ–ω–3′ existed in the common ancestor of marsupials and eutherians. However, results are inconclusive as to whether the two tammar ζ-globin genes arose by duplication prior to the radiation of the marsupial and eutherian lineages, with maintenance of exon sequences by gene conversion, or more recently within marsupials.Reviewing Editor: Dr. John Oakeshott  相似文献   

16.
Azotobacter vinelandii is proposed to contain a single β-ketothiolase activity participating in the formation of acetoacetyl-CoA, a precursor for poly-β-hydroxybutyrate (PHB) synthesis, and in β-oxidation (Manchak, J., Page, W.J., 1994. Control of polyhydroxyalkanoate synthesis in Azotobacter vinelandii strain UWD. Microbiology 140, 953–963). We designed a degenerate oligonucleotide from a highly conserved region among bacterial β-ketothiolases and used it to identify bktA, a gene with a deduced protein product with a high similarity to β-ketothiolases. Immediately downstream of bktA, we identified a gene called hbdH, which encodes a protein exhibiting similarity to β-hydroxyacyl-CoA and β-hydroxybutyryl-CoA dehydrogenases. Two regions with homology to bktA were also observed. One of these was cloned and allowed the identification of the phbA gene, encoding a second β-ketothiolase. Strains EV132, EV133, and GM1 carrying bktA, hbdH and phbA mutations, respectively, as well as strain EG1 carrying both bktA and phbA mutations, were constructed. The hbdH mutation had no effect on β-hydroxybutyryl-CoA dehydrogenase activity or on fatty acid assimilation. The bktA mutation had no effect on β-ketothiolase activity, PHB synthesis or fatty acid assimilation, whereas the phbA mutation significantly reduced β-ketothiolase activity and PHB accumulation, showing that this is the β-ketothiolase involved in PHB biosynthesis. Strain EG1 was found to grow under β-oxidation conditions and to possess β-ketothiolase activity. Taken together, these results demonstrate the presence of three genes coding for β-ketothiolases in A. vinelandii.  相似文献   

17.
18.
Laminin-5 and α3β1 integrin promote keratinocyte survival; however, the downstream signaling pathways for laminin-5/α3β1 integrin-mediated cell survival had not been fully established. We report the unexpected finding of multiple interactions between 14-3-3 isoforms and proapoptotic proteins in the survival signaling pathway. Ln5-P4 motif within human laminin-5 α3 chain promotes cell survival and anti-apoptosis by inactivating Bad and YAP. This effect is achieved through the formation of 14-3-3ζ/p-Bad and 14-3-3σ/p-YAP complexes, which is initiated by α3β1 integrin and FAK/PI3K/Akt signaling. These complexes result in cytoplasmic sequestration of Bad and YAP and their subsequent inactivation. An increase in Akt1 activity in cells induces 14-3-3ζ and σ, p-Bad, and p-YAP, promoting cell survival, whereas decreasing Akt activity suppresses the same proteins and inhibits cell survival. Suppression of 14-3-3ζ with RNA-interference inhibits cell viability and promotes apoptosis. These results reveal a new mechanism of cell survival whereby the formation of 14-3-3ζ/p-Bad and 14-3-3σ/p-YAP complexes is initiated by laminin-5 stimulation via the α3β1 integrin and FAK/PI3K/Akt signaling pathways, thereby resulting in cell survival and anti-apoptosis.  相似文献   

19.
Erythroid Krüppel-like factor (EKLF), an erythroid tissue-specific Krüppel-type zinc finger protein, binds to the β-globin gene CACCC box and is essential for β-globin gene expression. EKLF does not activate the γ gene, the CACCC sequence of which differs from that of the β gene. To test whether the CACCC box sequence difference is the primary determinant of the selective activation of the β gene by EKLF, the CACCC boxes of β and γ genes were swapped and the resulting promoter activities were assayed by transient transfections in CV-1 cells. EKLF activated the β promoter carrying a γ CACCC box at a level comparable to that at which it activated the wild-type β promoter, whereas EKLF failed to activate a γ promoter carrying the β CACCC box, despite the presence of the optimal EKLF binding site. Similar results were obtained in K562 cells. The possibility that overexpressed EKLF superactivated the β promoter carrying the γ CACCC box, or that EKLF activated the mutated β promoter through the intact distal CACCC box, was excluded. To test whether the position of the CACCC box in the β or γ promoter determined EKLF specificity, the proximal β CACCC box sequence was created at the position of the β promoter (−140) which corresponds to the position of the CACCC box on the γ promoter. Similarly, the β CACCC box was created in the position of the γ promoter (−90) corresponding to the position of the CACCC box in the β promoter. EKLF retained weak activation potential on the β−140CAC promoter, whereas EKLF failed to activate the γ−90βCAC promoter even though that promoter contained an optimal EKLF binding site at the optimal position. Taken together, our findings indicate that the specificity of the activation of the β promoter by EKLF is determined by the overall structure of the β promoter rather than solely by the sequence of the β gene CACCC box.  相似文献   

20.
We have applied multicolor BiFC to study the association preferences of G protein β and γ subunits in living cells. Cells co-express multiple isoforms of β and γ subunits, most of which can form complexes. Although many βγ complexes exhibit similar properties when assayed in reconstituted systems, knockout experiments in vivo suggest that individual isoforms have unique functions. BiFC makes it possible to correlate βγ complex formation with functionality in intact cells by comparing the amounts of fluorescent βγ complexes with their abilities to modulate effector proteins. The relative predominance of specific βγ complexes in vivo is not known. To address this issue, multicolor BiFC can determine the association preferences of β and γ subunits by simultaneously visualizing the two fluorescent complexes formed when β or γ subunits fused to amino terminal fragments of yellow fluorescent protein (YFP-N) and cyan fluorescent protein (CFP-N) compete to interact with limiting amounts of a common γ or β subunit, respectively, fused to a carboxyl terminal fragment of CFP (CFP-C). Multicolor BiFC also makes it possible to determine the roles of interacting proteins in the subcellular targeting of complexes, study the formation of protein complexes that are unstable under isolation conditions, determine the roles of co-expressed proteins in regulating the association preferences of interacting proteins, and visualize dynamic events affecting multiple protein complexes. These approaches can be applied to studying the assembly and functions of a wide variety of protein complexes in the context of a living cell.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号