首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
cAMP-dependent protein kinase mediates a variety of cellular responses in most eukaryotic cells. Many of these responses are cytoplasmic, whereas others appear to require nuclear localization of the catalytic subunit. In order to understand further the molecular basis for subcellular localization of the catalytic subunit, the effect of the heat stable protein kinase inhibitor (PKI) was investigated. The subcellular localization of the catalytic (C) subunit was determined both in the presence and absence of PKI, by microinjecting fluorescently labeled C subunit into single living cells. When injected alone, a significant fraction of the dissociated C subunit localized to the nucleus. When coin-injected with an excess of PKI, little of the C subunit localized to the nucleus, suggesting that accumulation of catalytic subunit in the nucleus requires either enzymatic activity or a nuclear localization signal. Inactivation of the catalytic subunit in vitro by treatment with N-ethylmaleimide did not prevent localization in the nucleus, indicating that enzymatic activity was not a prerequisite for nuclear localization. In an effort to search for a specific signal that might mediate nuclear localization, a complex of the catalytic subunit with a 20-residue inhibitory peptide derived from PKI (PKI(5-24)) was microinjected. In contrast to intact PKI, the peptide was not sufficient to block nuclear accumulation. In the presence of PKI(5-24), the C subunit localized to the nucleus in a fashion analogous to that of dissociated, active C subunit despite evidence of no catalytic activity in situ. Thus, nuclear localization of the C subunit appears to be independent of enzymatic activity but most likely dependent upon a signal. The signal is apparently masked by both the regulatory subunit and PKI but not by the inhibitory peptide.  相似文献   

2.
The enzyme 5-lipoxygenase initiates the synthesis of leukotrienes from arachidonic acid. Protein kinase A phosphorylates 5-lipoxygenase on Ser(523), and this reduces its activity. We report here that phosphorylation of Ser(523) also shifts the subcellular distribution of 5-lipoxygenase from the nucleus to the cytoplasm. Phosphorylation and redistribution of 5-lipoxygenase could be produced by overexpression of the protein kinase A catalytic subunit alpha, by pharmacological activators of protein kinase A, and by prostaglandin E(2). Mimicking phosphorylation by replacing Ser(523) with glutamic acid caused cytoplasmic localization; replacement of Ser(523) with alanine prevented phosphorylation and redistribution in response to protein kinase A activation. Because Ser(523) is positioned within the nuclear localization sequence-518 of 5-lipoxygenase, the ability of protein kinase A to phosphorylate and alter the localization of green fluorescent protein fused to the nuclear localization sequence-518 peptide was also tested. Site-directed replacement of Ser(523) with glutamic acid within the peptide impaired nuclear accumulation; overexpression of the protein kinase A catalytic subunit alpha and pharmacological activation of protein kinase caused phosphorylation of the fusion protein at Ser(523), and the phosphorylated protein was found chiefly in the cytoplasm. Taken together, these results indicate that phosphorylation of Ser(523) inhibits the nuclear import function of a nuclear localization sequence, resulting in the accumulation of 5-lipoxygenase enzyme in the cytoplasm. As cytoplasmic localization can be associated with reduced leukotriene synthetic capacity, phosphorylation of Ser(523) serves to inhibit leukotriene production by both impairing catalytic activity and by placing the enzyme in a site that is unfavorable for action.  相似文献   

3.
4.
Snf1 protein kinase containing the beta subunit Gal83 is localized in the cytoplasm during growth of Saccharomyces cerevisiae cells in abundant glucose and accumulates in the nucleus in response to glucose limitation. Nuclear localization of Snf1-Gal83 requires activation of the Snf1 catalytic subunit and depends on Gal83, but in the snf1Delta mutant, Gal83 exhibits glucose-regulated nuclear accumulation. We show here that the N terminus of Gal83, which is divergent from those of the other beta subunits, is necessary and sufficient for Snf1-independent, glucose-regulated localization. We identify a leucine-rich nuclear export signal in the N terminus and show that export depends on the Crm1 export receptor. We present evidence that catalytically inactive Snf1 promotes the cytoplasmic retention of Gal83 in glucose-grown cells through its interaction with the C terminus of Gal83; cytoplasmic localization of inactive Snf1-Gal83 maintains accessibility to the Snf1-activating kinases. Finally, we characterize the effects of glucose phosphorylation on localization. These studies define roles for Snf1 and Gal83 in determining the nucleocytoplasmic distribution of Snf1-Gal83 protein kinase.  相似文献   

5.
6.
7.
Protein kinase CK2 is a multifunctional enzyme which has long been described as a stable heterotetrameric complex resulting from the association of two catalytic (alpha or alpha') and two regulatory (beta) subunits. To track the spatiotemporal dynamics of CK2 in living cells, we fused its catalytic alpha and regulatory beta subunits with green fluorescent protein (GFP). Both CK2 subunits contain nuclear localization domains that target them independently to the nucleus. Imaging of stable cell lines expressing low levels of GFP-CK2alpha or GFP-CK2beta revealed the existence of CK2 subunit subpopulations exhibiting differential dynamics. Once in the nucleus, they diffuse randomly at different rates. Unlike CK2beta, CK2alpha can shuttle, showing the dynamic nature of the nucleocytoplasmic trafficking of the kinase. When microinjected in the cytoplasm, the isolated CK2 subunits are rapidly translocated into the nucleus, whereas the holoenzyme complex remains in this cell compartment, suggesting an intramolecular masking of the nuclear localization sequences that suppresses nuclear accumulation. However, binding of FGF-2 to the holoenzyme triggers its nuclear translocation. Since the substrate specificity of CK2alpha is dramatically changed by its association with CK2beta, the control of the nucleocytoplasmic distribution of each subunit may represent a unique potential regulatory mechanism for CK2 activity.  相似文献   

8.
Protein kinase D2 (PKD2) belongs to the PKD family of serine/threonine kinases that is activated by phorbol esters and G protein-coupled receptors (GPCRs). Its C-terminal regulatory domain comprises two cysteine-rich domains (C1a/C1b) followed by a pleckstrin homology (PH) domain. Here, we examined the role of the regulatory domain in PKD2 phorbol ester binding, catalytic activity, and subcellular localization: The PH domain is a negative regulator of kinase activity. C1a/C1b, in particular C1b, is required for phorbol ester binding and gastrin-stimulated PKD2 activation, but it has no inhibitory effect on the catalytic activity. Gastrin triggers nuclear accumulation of PKD2 in living AGS-B cancer cells. C1a/C1b, not the PH domain, plays a complex role in the regulation of nucleocytoplasmic shuttling: We identified a nuclear localization sequence in the linker region between C1a and C1b and a nuclear export signal in the C1a domain. In conclusion, our results define the critical components of the PKD2 regulatory domain controlling phorbol ester binding, catalytic activity, and nucleocytoplasmic shuttling and reveal marked differences to the regulatory properties of this domain in PKD1. These findings could explain functional differences between PKD isoforms and point to a functional role of PKD2 in the nucleus upon activation by GPCRs.  相似文献   

9.
10.
The subcellular distribution of the regulatory subunit of cAMP-dependent protein kinase in Saccharomyces cerevisiae cells was determined by subcellular fractionation and indirect immunofluorescence microscopy using the bcy1 mutant deficient in the regulatory subunit as control. The regulatory subunit of cAMP-dependent protein kinase showing cAMP-binding activity was identified as a single protein of 50 kDa by photoaffinity labeling and immunoblotting. The regulatory subunit was concentrated in a nuclear fraction in addition to a cytoplasmic fraction. By comparison of the regulatory subunit distribution with the DNA localization, the area detected by the indirect immunofluorescence was identified as the nucleus.  相似文献   

11.
12.
13.
The catalytic (C) subunit of cyclic AMP (cAMP) dependent protein kinase (PKA) has previously been shown to enter and exit the nucleus of cells when intracellular cAMP is raised and lowered, respectively. To determine the mechanism of nuclear translocation, fluorescently labeled C subunit was injected into living REF52 fibroblasts either as free C subunit or in the form of holoenzyme (PKA) in which the catalytic and regulatory subunits were labeled with fluorescein and rhodamine, respectively. Quantification of nuclear and cytoplasmic fluorescence intensities revealed that free C subunit nuclear accumulation was most similar to that of macromolecules that diffuse into the nucleus. A glutathione S-transferase-C subunit fusion protein did not enter the nucleus following cytoplasmic microinjection. Puncturing the nuclear membrane did not decrease the nuclear concentration of C subunit, and C subunit entry into the nucleus did not appear to be saturable. Cooling or depleting cells of energy failed to block movement of C subunit into the nucleus. Photobleaching experiments showed that even after reaching equilibrium at high [cAMP], individual molecules of C subunit continued to leave the nucleus at approximately the same rate that they had originally entered. These results indicate that diffusion is sufficient to explain most aspects of C subunit subcellular localization.  相似文献   

14.
The protein kinase inhibitor (PKI) family includes three genes encoding small, heat-stable inhibitors of the cyclic AMP-dependent kinase PKA. Each PKI isoform contains a PKA inhibitory domain and a nuclear export domain, enabling PKI to both inhibit PKA and remove it from the nucleus. The PKIbeta isoform, also known as testis PKI, is highly expressed in germ cells of the testis and is found at more modest levels in other tissues. In order to investigate its physiological role, we have generated PKIbeta knockout mice by gene targeting. These mice exhibit a partial loss of PKI activity in testis but remain fertile with normal testis development and function. PKIbeta knockout females also reproduce normally. The PKIbeta mutants were crossed with our previously derived PKIalpha mutants to obtain double-knockout mice. Remarkably, these mice are also viable and fertile with no obvious physiological defects in either males or females.  相似文献   

15.
J S Tash  M J Welsh  A R Means 《Cell》1980,21(1):57-65
Multiple forms of protein kinase inhibitor exist in mammalian testis. Specific antibodies to testicular protein kinase inhibitor (PKI) have been raised in sheep. The antibody to the smallest of the inhibitors (9300 daltons) has been purified by antigen-affinity chromatography and shown to give a precipitin band with the inhibitor by double immunodiffusion. The antibody does not recognize any of the subunits of cyclic nucleotide-dependent protein kinases, namely cGMP-dependent protein kinase or the catalytic or regulatory subunits from type I or type II cAMP-dependent protein kinases. The biological activity of the 9300 dalton PKI is blocked completely by a 5 fold molar excess of antibody. Furthermore, the antibody can also block the activity of all other forms of testicular PKI. Using the antibody in indirect immunofluorescence microscopy, PKI localization was examined during interphase and mitosis in a variety of cell types. Our observations indicate that PKI is localized on microtubules in the cytoplasmic microtubule complex during interphase and in the spindle apparatus during mitosis. We suggest that PKI may play a role in the cAMP-dependent regulation of microtubule structure and/or function.  相似文献   

16.
M Fukuda  Y Gotoh    E Nishida 《The EMBO journal》1997,16(8):1901-1908
The mitogen-activated protein kinase (MAPK) cascade consisting of MAPK and its direct activator, MAPK kinase (MAPKK), is essential for signaling of various extracellular stimuli to the nucleus. Upon stimulation, MAPK is translocated to the nucleus, whereas MAPKK stays in the cytoplasm. It has been shown recently that the cytoplasmic localization of MAPKK is determined by its nuclear export signal (NES) in the near N-terminal region (residues 33-44). However, the mechanism determining the subcellular distribution of MAPK has been poorly understood. Here, we show that introduction of v-Ras, active STE11 or constitutively active MAPKK can induce nuclear translocation of MAPK in mammalian cultured cells. Furthermore, we show evidence suggesting that MAPK is localized to the cytoplasm through its specific association with MAPKK and that nuclear accumulation of MAPK is accompanied by dissociation of a complex between MAPK and MAPKK following activation of the MAPK pathway. We have identified the MAPK-binding site of MAPKK as its N-terminal residues 1-32. Moreover, a peptide encompassing the MAPK-binding site and the NES sequence of MAPKK has been shown to be sufficient to retain MAPK to the cytoplasm. These findings reveal the molecular basis regulating subcellular distribution of MAPK, and identify a novel function of MAPKK as a cytoplasmic anchoring protein for MAPK.  相似文献   

17.
Ribosomal S6 kinase 1 (RSK1) belongs to a family of proteins with two kinase domains. Following activation in the cytoplasm by extracellular signal-regulated kinases (ERK1/2), it mediates the cell-proliferative, cell-growth, and survival-promoting actions of a number of growth factors and other agonists. These diverse biological actions of RSK1 involve regulation of both cytoplasmic and nuclear events. However, the mechanisms that permit nuclear accumulation of RSK1 remain unknown. Here, we show that phosphorylation of RSK1 on S221 is important for its dissociation from the type Iα regulatory subunit of protein kinase A (PKA) in the cytoplasm and that RSK1 contains a bipartite nuclear localization sequence that is necessary for its nuclear entry. Once inside, the active RSK1 is retained in the nucleus via its interactions with PKA catalytic subunit and AKAP95. Mutations of RSK1 that do not affect its activity but disrupt its entry into the nucleus or expression of AKAP95 forms that do not enter the nucleus inhibit the ability of active RSK1 to stimulate DNA synthesis. Our findings identify novel mechanisms by which active RSK1 accumulates in the nucleus and also provide new insights into how AKAP95 orchestrates cell cycle progression.  相似文献   

18.
19.
Many RNA viruses, which replicate predominantly in the cytoplasm, have nuclear components that contribute to their life cycle or pathogenesis. We investigated the intracellular localization of the multifunctional nonstructural protein 2 (nsP2) in mammalian cells infected with Venezuelan equine encephalitis virus (VEE), an important, naturally emerging zoonotic alphavirus. VEE nsP2 localizes to both the cytoplasm and the nucleus of mammalian cells in the context of infection and also when expressed alone. Through the analysis of a series of enhanced green fluorescent protein fusions, a segment of nsP2 that completely localizes to the nucleus of mammalian cells was identified. Within this region, mutation of the putative nuclear localization signal (NLS) PGKMV diminished, but did not obliterate, the ability of the protein to localize to the nucleus, suggesting that this sequence contributes to the nuclear localization of VEE nsP2. Furthermore, VEE nsP2 specifically interacted with the nuclear import protein karyopherin-alpha1 but not with karyopherin-alpha2, -3, or -4, suggesting that karyopherin-alpha1 transports nsP2 to the nucleus during infection. Additionally, a novel nuclear export signal (NES) was identified, which included residues L526 and L528 of VEE nsP2. Leptomycin B treatment resulted in nuclear accumulation of nsP2, demonstrating that nuclear export of nsP2 is mediated via the CRM1 nuclear export pathway. Disruption of either the NLS or the NES in nsP2 compromised essential viral functions. Taken together, these results establish the bidirectional transport of nsP2 across the nuclear membrane, suggesting that a critical function of nsP2 during infection involves its shuttling between the cytoplasm and the nucleus.  相似文献   

20.
Cell cycle-dependent regulation of the DNA-dependent protein kinase   总被引:1,自引:0,他引:1  
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号