首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Vitreoscilla is a gram-negative bacterium that contains a unique bacterial hemoglobin that is relatively autoxidizable. It also contains a catalase whose primary function may be to remove hydrogen peroxide produced by this autoxidation. This enzyme was purified and partially characterized. It is a protein of 272,000 Da with a probable A2B2 subunit structure, in which the estimated molecular size of A is 68,000 Da and that of B, 64,000 Da, and an average of 1.6 molecules of protoheme IX per tetramer. The turnover number for its catalase activity was 27,000 s-1 and the Km for hydrogen peroxide was 16 mM. The peroxidase activity measured using o-dianisidine was 0.6% that of the catalase activity. Cyanide, which inhibited both catalase and peroxidase activities, bound the heme in a noncooperative manner. Azide inhibited the catalase activity but stimulated the peroxidase activity. An apparent compound II was formed by the reaction of the enzyme with ethyl hydrogen peroxide. The enzyme was reducible by dithionite, and the ferrous enzyme reacted with CO. The cellular content of Vitreoscilla hemoglobin varies during the growth cycle and in cells grown under different conditions, but the ratio of hemoglobin to catalase activity remained relatively constant, indicating possible coordinated biosynthesis and supporting the putative role of Vitreoscilla catalase as a scavenger of peroxide generated by Vitreoscilla hemoglobin.  相似文献   

2.
In this study we constructed an artificial flavohemoprotein by fusing Vitreoscilla hemoglobin (VHb) with D-amino acid oxidase (DAO) of Rhodotorula gracilis to determine whether bacterial hemoglobin can be used as an oxygen donor to immobilized flavoenzyme. This chimeric enzyme significantly enhanced DAO activity and stability in the bioconversion process of cephalosporin C. In a 200-mL bioreactor, the catalytic efficiency of immobilized VHb-DAO against cephalosporin C was 12.5-fold higher than that of immobilized DAO, and the operational stability of the immobilized VHb-DAO was approximately threefold better than that of the immobilized DAO. In the scaled-up bioprocess with a 5-L bioreactor, immobilized VHb-DAO (2500 U/L) resulted in 99% bioconversion of 120 mM cephalosporin C within 60 min at an oxygen flow rate of 0.2 (v/v) x min. Ninety percent of the initial activity of immobilized VHb-DAO could be maintained at up to 50 cycles of the enzymatic reaction without exogenous addition of H(2)O(2) and flavin adenine dinucleotide (FAD). The purity of the final product, glutaryl-7-aminocephalosporanic acid, was confirmed to be 99.77% by high-performance liquid chromatography (HPLC) analysis. Relative specificity of immobilized VHb-DAO on D-alpha-aminoadipic acid, a precursor in cephalosporin C biosynthesis, increased twofold, compared with that of immobilized DAO, suggesting that conformational modification of the VHb-DAO fusion protein may be altered in favor of cephalosporin C.  相似文献   

3.
Bacteria engineered with the gene (vgb) encoding Vitreoscilla hemoglobin (VHb) typically produce more protein than unengineered cells, and it has generally been assumed that VHb is responsible for this effect. Here, using matched strains of E. coli that bear a recombinant alpha-amylase gene (MK57) or the alpha-amylase gene and vgb (MK79), we provide evidence supporting this assumption. Sodium nitrite (which is known to inhibit heme proteins) was tested over a range of concentrations regarding effects on growth, alpha-amylase production, respiration, and VHb function in MK57 and MK79. Nitrite concentrations were identified at which respiration of cell membranes was inhibited only slightly and to approximately equal degrees in both strains, while whole cell respiration was inhibited to a greater extent and about twice as much in MK79 as MK57. This suggests that these concentrations inhibit VHb while having a much smaller effect on cytochrome oxidase. Direct measurements of VHb showed, in fact, that the same nitrite concentrations greatly decreased the levels of active (ferrous) and, to a somewhat lesser extent, total (ferrous plus ferric) VHb in MK79. Finally, these same nitrite concentrations reversed the advantage regarding alpha-amylase production of MK79 over MK57 seen at 0 mM nitrite, linking the presence of active VHb with the increase in alpha-amylase production.  相似文献   

4.
Manganese peroxidase and lignin peroxidase are ligninolytic heme-containing enzymes secreted by the white-rot fungus Phanerochaete chrysosporium. Despite structural similarity, these peroxidases oxidize different substrates. Veratryl alcohol is a typical substrate for lignin peroxidase, while manganese peroxidase oxidizes chelated Mn2+. By a single mutation, S168W, we have added veratryl alcohol oxidase activity to recombinant manganese peroxidase expressed in Escherichia coli. The kcat for veratryl alcohol oxidation was 11 s-1, Km for veratryl alcohol approximately 0.49 mM, and Km for hydrogen peroxide approximately 25 microM at pH 2.3. The Km for veratryl alcohol was higher and Km for hydrogen peroxide was lower for this manganese peroxidase mutant compared to two recombinant lignin peroxidase isoenzymes. The mutant retained full manganese peroxidase activity and the kcat was approximately 2.6 x 10(2) s-1 at pH 4.3. Consistent with relative activities with respect to these substrates, Mn2+ strongly inhibited veratryl alcohol oxidation. The single productive mutation in manganese peroxidase suggested that this surface tryptophan residue (W171) in lignin peroxidase is involved in catalysis.  相似文献   

5.
Thermodynamics and kinetics for cyanide, azide, thiocyanate and imidazole binding to recombinant ferric Vitreoscilla sp. homodimeric hemoglobin (Vitreoscilla Hb) have been determined at pH 6.4 and 7.0, and 20.0 degrees C, in solution and in the crystalline state. Moreover, the three-dimensional structures of the diligated thiocyanate and imidazole derivatives of recombinant ferric Vitreoscilla Hb have been determined by X-ray crystallography at 1.8 A (Rfactor=19.9%) and 2.1 A (Rfactor=23.8%) resolution, respectively. Ferric Vitreoscilla Hb displays an anticooperative ligand binding behaviour in solution. This very unusual feature can only be accounted for by assuming ligand-linked conformational changes in the monoligated species, which lead to the observed 300-fold decrease in the affinity of cyanide, azide, thiocyanate and imidazole for the monoligated ferric Vitreoscilla Hb with respect to that of the fully unligated homodimer. In the crystalline state, thermodynamics for azide and imidazole binding to ferric Vitreoscilla Hb may be described as a simple process with an overall ligand affinity for the homodimer corresponding to that for diligation in solution. These data suggest that the ligand-free homodimer, observed in the crystalline state, is constrained in a low affinity conformation whose ligand binding properties closely resemble those of the monoligated species in solution. From the kinetic viewpoint, anticooperativity is reflected by the 300-fold decrease of the second-order rate constant for cyanide and imidazole binding to the monoligated ferric Vitreoscilla Hb with respect to that for ligand association to the ligand-free homodimer in solution. On the other hand, values of the first-order rate constant for cyanide and imidazole dissociation from the diligated and monoligated derivatives of ferric Vitreoscilla Hb in solution are closely similar. As a whole, ligand binding and structural properties of ferric Vitreoscilla Hb appear to be unique among all Hbs investigated to date.  相似文献   

6.
Summary Mucous cells in the basal disk of hydra contain a peroxidase-like enzyme allowing specific staining of these cells with substrates for peroxidases. The peroxidase activity provides an excellent marker for foot mucous cell, differentiation and was used to follow the reappearance of footspecific cells during foot regeneration after amputation. By choosing the appropriate either soluble or precipitable substrate the peroxidase reaction was used both for a qualitative and for a quantitative evaluation of foot-specific differentiation in hydra. For histological studies diaminobenzidien was found to be a suitable substrate which forms a dark brown precipitate within the cells containing the peroxidase activity. For a quantitative evaluation of foot regeneration the soluble substrate 2,2-azino-di(3-ethyl-benzthiazoline-sulfonic acid-6) ammonium salt was used which after reaction with the enzyme gives rise to a diffusible green reaction product the concentration of which can be measured by its specific absorption at 415 nm. Based on the diffusible enzyme product a new quantitative assay for foot regenration was developed and applied to confirm the effect and specificity of morphogenetic substances which either inhibit or activate foot or head regeneration in hydra.  相似文献   

7.
Hemin (Fe(3+)) was adsorbed onto synthetic smectite (clay mineral) intercalated with a quaternary alkenylammonium compound, dioleyldimethylammonium chloride (DOA), to form a hemin-smectite-DOA conjugate. The hemin-smectite-DOA conjugate was soluble in organic solvents such as benzene and toluene to form a transparent colloidal solution with a light yellow color. Its absorption spectrum in benzene showed two bands, 600 and 568 nm, in the visible region and a sharp Soret band at 400 nm with the molar extinction coefficient of 7.5 x 10(4) M(-1) cm(-1). The formation of the conjugate of smectite and DOA was confirmed by X-ray diffraction analysis: the basal spacing, d(001), of hemin-smectite-DOA conjugate was 19 A which is an expansion of the interlayer space by 5 A based upon the basal spacing of smectite of 14 A. Hemin-smectite-DOA conjugate catalyzed the peroxidase-like reaction in organic solvents using benzoyl peroxide as the hydrogen acceptor and leucocrystal violet as the hydrogen donor. The temperature-dependent peroxidase-like activity of the conjugate was compared with peroxidase activity of horseradish peroxidase. The hemin-smectite-DOA conjugate exhibited higher activity as the temperature was increased from 30 to 70 degrees C, while horseradish peroxidase activity was reduced as the temperature was increased.  相似文献   

8.
The obligate aerobic bacterium, Vitreoscilla, synthesizes elevated quantities of a homodimeric hemoglobin (VHb) under hypoxic growth conditions. Expression of VHb in heterologous hosts often enhances growth and product formation. A role in facilitating oxygen transfer to the respiratory membranes is one explanation of its cellular function. Immunogold labeling of VHb in both Vitreoscilla and recombinant Escherichia coli bearing the VHb gene clearly indicated that VHb has a cytoplasmic (not periplasmic) localization and is concentrated near the periphery of the cytosolic face of the cell membrane. OmpA signal-peptide VHb fusions were transported into the periplasm in E. coli, but this did not confer any additional growth advantage. The interaction of VHb with respiratory membranes was also studied. The K(d) values for the binding of VHb to Vitreoscilla and E. coli cell membranes were approximately 5-6 microm, a 4-8-fold higher affinity than those of horse myoglobin and hemoglobin for these same membranes. VHb stimulated the ubiquinol-1 oxidase activity of inverted Vitreoscilla membranes by 68%. The inclusion of Vitreoscilla cytochrome bo in proteoliposomes led to 2.4- and 6-fold increases in VHb binding affinity and binding site number, respectively, relative to control liposomes, suggesting a direct interaction between VHb and cytochrome bo.  相似文献   

9.
In this paper, we demonstrated that bovine serum albumin (BSA) stabilized Au clusters exhibited highly intrinsic peroxidase-like activity. Unlike nature enzymes, the BSA-Au clusters have strong robustness and can be used over a wide range of pH and temperature. Because of ultra-small size, good stability and high biocompatibility in water solution compare with other kinds of nanoparticles as peroxidase mimetics, such as Fe(3)O(4), FeS or graphene oxide, it is more competent for bioanalysis. Furthermore, we make use of the novel properties of BSA-Au clusters as peroxidase mimetics to detect H(2)O(2). The as-prepared BSA-Au clusters were used to catalyze the oxidation of a peroxidase substrate 3,3,5,5-tetramethylbenzidine (TMB) by H(2)O(2) to the oxidized colored product, and which provides a colorimetric detection of H(2)O(2). As low as 2.0 × 10(-8)M H(2)O(2) could be detected with a linear range from 5.0 × 10(-7) to 2.0 × 10(-5)M via this method. More importantly, a sensitive and selective method for xanthine detection was developed using xanthine oxidase (XOD) and the as-prepared BSA-Au clusters. The detection limit of this assay for xanthine was 5 × 10(-7)M and the proposed method was successfully applied for the determination of xanthine in urine and human serum sample.  相似文献   

10.
Isothermal titration calorimetry (ITC) was developed for measuring lignin peroxidase (LiP) and manganese peroxidase (MnP) activities of versatile peroxidase (VP) from Bjerkandera adusta. Developing an ITC approach provided an alternative to colorimetric methods that enabled reaction kinetics to be accurately determined. Although VP from Bjerkandera adjusta is a hybrid enzyme, specific conditions of [Mn+2] and pH were defined that limited activity to either LiP or MnP activities, or enabled both to be active simultaneously. MnP activity was found to be more efficient than LiP activity, with activity increasing with increasing concentrations of Mn+2. These properties of MnP were explained by a second metal binding site involved in homotropic substrate (Mn+2) activation. The activation of MnP was also accompanied by a decrease in both activation energy and substrate (Mn) affinity, reflecting a flexible enzyme structure. In contrast to MnP activity, LiP activity was inhibited by high dye (substrate) concentrations arising from uncompetitive substrate inhibition caused by substrate binding to a site distinct from the catalytic site. Our study provides a new level of understanding about the mechanism of substrate regulation of catalysis in VP from B. adjusta, providing insight into a class of enzyme, hybrid class II peroxidases, for which little experimental data is available.  相似文献   

11.
Expression of the gene encoding bacterial hemoglobin (VHb) from Vitreoscilla has been previously used to improve recombinant cell growth and enhance product formation under microaerobic conditions. It is very likely that the properties of VHb are not optimized for foreign hosts; therefore, we used error-prone PCR to generate a number of randomly mutated vhb genes to be expressed and studied in Escherichia coli. In addition, the mutated VHb proteins also contained an extension of eight residues (MTMITPSF) at the amino terminus. VHb mutants were screened for improved growth properties under microaerobic conditions and 15 clones expressing mutated hemoglobin protein were selected for further characterization and cultivated in a microaerobic bioreactor to analyze the physiological effects of novel VHb proteins on cell growth. The expression of four VHb mutants, carried by pVM20, pVM50, pVM104, and pVM134, were able to enhance microaerobic growth of E. coli by approximately 22%, 155%, 50%, and 90%, respectively, with a concomitant decrease of acetate excretion into the culture medium. The vhb gene in pVM20 contains two mutations substituting residues Glu19(A17) and Glu137(H23) to Gly. pVM50 expresses a VHb protein carrying two mutations: His36(C1) to Arg36 and Gln66(E20) to Arg66. pVM104 and pVM134 express VHb proteins carrying the mutations Ala56(E10) to Gly and Ile24(B5) to Thr, respectively. Our experiments also indicate that the positive effects elicited by mutant VHb-expression from pVM20 and pVM50 are linked to the peptide tail. Removal of the N-terminal sequence reduced cell growth approximately 23% and 53%, respectively, relative to wild-type controls. These results clearly demonstrate that it is possible to obtain mutated VHb proteins with improved characteristics for improving microaerobic growth of E. coli by using combined mutation techniques, addition of a peptide tail, and random error-prone PCR.  相似文献   

12.
The monomer-dimer equilibrium and the oxygen binding properties of ferrous recombinant Vitreoscilla hemoglobin (Vitreoscilla Hb) have been investigated. Sedimentation equilibrium data indicate that the ferrous deoxygenated and carbonylated derivatives display low values of equilibrium dimerization constants, 6 x 10(2) and 1 x 10(2) M(-1), respectively, at pH 7.0 and 10 degrees C. The behavior of the oxygenated species, as measured in sedimentation velocity experiments, is superimposable to that of the carbonylated derivative. The kinetics of O(2) combination, measured by laser photolysis at pH 7.0 and 20 degrees C, is characterized by a second-order rate constant of 2 x 10(8) M(-1) s(-1) whereas the kinetics of O(2) release at pH 7.0 is biphasic between 10 and 40 degrees C, becoming essentially monophasic below 10 degrees C. Values of the first-order rate constants (at 20 degrees C) and of the activation energies for the fast and slow phases of the Vitreoscilla Hb deoxygenation process are 4.2 s(-1) and 19.2 kcal mol(-1) and 0.15 s(-1) and 24.8 kcal mol(-1), respectively. Thus the biphasic kinetics of Vitreoscilla Hb deoxygenation is unrelated to the association state of the protein. The observed biphasic oxygen release may be accounted for by the presence of two different conformers in thermal equilibrium within the monomer. The two conformers may be assigned to a structure in which the heme-iron-bound ligand is stabilized by direct hydrogen bonding to TyrB10 and a structure in which such interaction is absent. The slow interconversion between the two conformers may reflect a very large conformational rearrangement in the disordered distal pocket segment connecting helices C and E.  相似文献   

13.
The properties of a peroxidase from Arthromyces ramosus (ARP) in the chemiluminescent reaction of luminol oxidation have been studied. These were compared with the properties of horse radish peroxidase (HRP) in the cooxidation of luminol and p-iodophenol, the enhanced chemiluminescence (ECL) reaction. By means of the stop-flow technique, ARP was shown to have an enzymatic activity toward luminol higher than that toward HRP. ARP can efficiently catalyze luminol oxidation in the absence of substrate enhancer. pH and substrate concentrations were optimized to determine ARP with the highest sensitivity. The detection limit of ARP was 5 x 10(-13) M, the same as that for HRP in the ECL reaction. The data on the use of ARP as a label in enzyme immunoassay of human IgG are presented. ARP was shown to have all the advantages of HRP as a label in chemiluminescent enzyme immunoassays: (i) high signal intensity, (ii) slow decay of luminescence, (iii) high signal/noise ratio, and (iv) as a consequence of (i)-(iii), high detection sensitivity. However, the low thermostability of ARP can limit the potential fields of its application.  相似文献   

14.
A soluble form of penicillin-binding protein 3 (PBP 3) from Neisseria gonorrhoeae was expressed and purified from Escherichia coli and characterized for its interaction with beta-lactam antibiotics, its catalytic properties with peptide and peptidoglycan substrates, and its role in cell viability and morphology. PBP 3 had an unusually high k(2)/K' value relative to other PBPs for acylation with penicillin (7.7 x 10(5) M(-1) s(-1)) at pH 8.5 at 25 degrees C and hydrolyzed bound antibiotic very slowly (k(3) < 4.6 x 10(-5) s(-1), t(1/2) > 230 min). PBP 3 also demonstrated exceptionally high carboxypeptidase activity with a k(cat) of 580 s(-1) and a k(cat)/K(m) of 1.8 x 10(5) M(-1) s(-1) with the substrate N(alpha)-Boc-N(epsilon)-Cbz-L-Lys-D-Ala-D-Ala. This is the highest k(cat) value yet reported for a PBP or other serine peptidases. Activity against a approximately D-Ala-D-Lac peptide substrate was approximately 2-fold lower than against the analogous approximately D-Ala-D-Ala peptide substrate, indicating that deacylation is rate determining for both amide and ester hydrolysis. The pH dependence profiles of both carboxypeptidase activity and beta-lactam acylation were bell-shaped with maximal activity at pH 8.0-8.5. PBP 3 displayed weak transpeptidase activity in a model transpeptidase reaction but was active as an endopeptidase, cleaving dimeric peptide cross-links. Deletion of PBP 3 alone had little effect on viability, growth rate, and morphology of N. gonorrhoeae, although deletion of both PBP 3 and PBP 4, the other low-molecular-mass PBP in N. gonorrhoeae, resulted in a decreased growth rate and marked morphological abnormalities.  相似文献   

15.
In response to oxygen limitation or oxidative and nitrosative stress, bacteria express three kinds of hemoglobin proteins: truncated hemoglobins (tr Hbs), hemoglobins (Hbs) and flavohemoglobins (flavo Hbs). The two latter groups share a high sequence homology and structural similarity in their globin domain. Flavohemoglobin proteins contain an additional reductase domain at their C-terminus and their expression is induced in the presence of reactive nitrogen and oxygen species. Flavohemoglobins detoxify NO in an aerobic process, termed nitric oxide dioxygenase reaction, which protects the host from various noxious nitrogen compounds. Only a small number of bacteria express hemoglobin proteins and the best studied of these is from Vitreoscilla sp. Vitreoscilla hemoglobin (VHb) has been expressed in various heterologous hosts under oxygen-limited conditions and has been shown to improve growth and productivity, rendering the protein interesting for biotechnology industry. The close interaction of VHb with the terminal oxidases has been shown and this interplay has been proposed to enhance respiratory activity and energy production by delivering oxygen, the ultimate result being an improvement in growth properties.  相似文献   

16.
Stopped-flow techniques were utilized to investigate the kinetics of the reaction of lignin peroxidase compounds I and II (LiPI and LiPII) with veratryl alcohol (VA). All rate data were collected from single turnover experiments under pseudo first-order conditions. The reaction of LiPI with VA strictly obeys second-order kinetics over the pH range 2.72-5.25 as demonstrated by linear plots of the pseudo first-order rate constants versus concentrations of VA. The second-order rate constants are strongly dependent on pH and range from 2.62 x 10(6) M-1 s-1 (pH 2.72) to 1.45 x 10(4) M-1 s-1 (pH 5.25). The reaction of LiPII and VA exhibits saturation behavior when the observed pseudo first-order rate constants are plotted against VA concentrations. The saturation phenomenon is quantitatively explained by the formation of a 1:1 LiPII-substrate complex. Results of kinetic and rapid scan spectral analyses exclude the formation of a LiPII-VA cation radical complex. The first-order dissociation rate constant and the equilibrium dissociation constant for the LiPII reaction are also pH dependent. Binding of VA to LiPII is controlled by a heme-linked ionizable group of pKa approximately 4.2. The pH profiles of the second-order rate constants for the LiPI reaction and of the first-order dissociation constants for the LiPII reaction both demonstrate two pKa values at approximately 3.0 and approximately 4.2. Protonated oxidized enzyme intermediates are most active, suggesting that only electron transfer, not proton uptake from the reducing substrate, occurs at the enzyme active site. These results are consistent with the one-electron oxidation of VA to an aryl cation radical by LiPI and LiPII.  相似文献   

17.
Peroxidase from soybean seed coat (SBP) has properties that makes it particularly suited for practical applications. Therefore, it is essential to know its fundamental enzymatic properties. Stopped-flow techniques were used to investigate the pH dependence of the reaction of SBP and hydrogen peroxide. The reaction is linearly dependent on hydrogen peroxide concentration at acidic and neutral pH with the second order rate constant k(1)=2.0x10(7) M(-1) s(-1), pH 4-8. From pH 9.3 to 10.2 the reaction is biphasic, a novel observation for a peroxidase at alkaline pH. A fast reaction has the characteristics of the reaction at neutral pH, and a slow reaction shows hyperbolic dependence on hydrogen peroxide concentration. At pH >10.5 only the slow reaction is seen. The shift in mechanism is coincident with the change in haem iron co-ordination to a six-coordinate low spin hydroxy ligated alkaline form. The pK(a) value for the alkaline transition was observed at 9.7+/-0.1, 9.6+/-0.1 and 9.9+/-0.2 by spectrophotometric titration, the fast phase amplitude, and decrease in the apparent second order rate constant, respectively. An acidic pK(a) at 3.2+/-0.3 was also determined from the apparent second order rate constant. The reactions of soybean peroxidase compounds I and II with veratryl alcohol at pH 2.44 give very similar second order rate constants, k(2)=(2.5+/-0.1)x10(4) M(-1) s(-1) and k(3)=(2.2+/-0.1)x10(4) M(-1) s(-1), respectively, which is unusual. The electronic absorption spectra of compounds I, II and III at pH 7.07 show characteristic bands at 400 and 651 nm (compound I), 416, 527 and 555 nm (compound II), and 414, 541 and 576 nm (compound III). No additional intermediates were observed.  相似文献   

18.
Horseradish peroxidase (HRP) catalyzes the oxidative chemiluminescent reaction of luminol, and firefly luciferase catalyzes the oxidation of firefly D-luciferin. Here we report a novel substrate, 5-(5'-azoluciferinyl)-2,3-dihydro-1,4-phthalazinedione (ALPDO), that can trigger the activity of HRP and firefly luciferase in solution because it contains both luminol and luciferin functionalities. It is synthesized by diazotization of luminol and its subsequent azo coupling with firefly luciferin. NMR spectral data show that the C5' of benzothiazole in luciferin connects the diazophthalahydrazide. The electronic absorption and fluorescence properties of ALPDO are different from those of its precursor molecules. The chemiluminescence emission spectra of the conjugate substrate display biphotonic emission characteristic of azophthalatedianion and oxyluciferin. It has an optimum pH of 8.0 for maximum activity with respect to HRP as well as luciferase. At pH 8.0 the bifunctional substrate has 12 times the activity of luminol but has 7 times less activity than the firefly luciferin-luciferase system. The specific enhancement of light emission from the cyclic hydrazide part of ALPDO helped in the sensitive assay of HRP down to 2.0 x 10(-13) M and of ATP to 1.0 x 10(-14) mol. Addition of enhancers such as firefly luciferin and p-iodophenol (PIP) to the HRP-ALPDO-H2O2 system enhanced the light output.  相似文献   

19.
This study investigated phospholipid hydroperoxides as substrates for non-selenium GSH peroxidase (NSGPx), an enzyme also called 1-Cys peroxiredoxin. Recombinant human NSGPx expressed in Escherichia coli from a human cDNA clone (HA0683) showed GSH peroxidase activity with sn-2-linolenoyl- or sn-2-arachidonoyl-phosphatidylcholine hydroperoxides as substrate; NADPH or thioredoxin could not substitute for GSH. Activity did not saturate with GSH, and kinetics were compatible with a ping-pong mechanism; kinetic constants (mM(-1) min(-1)) were k(1) = 1-3 x 10(5) and k(2) = 4-11 x 10(4). In the presence of 0.36 mM GSH, apparent K(m) was 120-130 microM and apparent V(max) was 1.5-1.6 micromol/min/mg of protein. Assays with H(2)O(2) and organic hydroperoxides as substrate indicated activity similar to that with phospholipid hydroperoxides. Maximal enzymatic activity was at pH 7-8. Activity with phospholipid hydroperoxide substrate was inhibited noncompetitively by mercaptosuccinate with K(i) 4 miroM. The enzyme had no GSH S-transferase activity. Bovine cDNA encoding NSGPx, isolated from a lung expression library using a polymerase chain reaction probe, showed >95% similarity to previously published human, rat, and mouse sequences and does not contain the TGA stop codon, which is translated as selenocysteine in selenium-containing peroxidases. The molecular mass of bovine NSGPx deduced from the cDNA is 25,047 Da. These results identify a new GSH peroxidase that is not a selenoenzyme and can reduce phospholipid hydroperoxides. Thus, this enzyme may be an important component of cellular antioxidant defense systems.  相似文献   

20.
The bacterial hemoglobin from Vitreoscilla has been shown to increase growth yield and yield of genetically engineered product in Escherichia coli. To test the generality of this phenomenon, the approximately 560-bp bacterial (Vitreoscilla) hemoglobin gene (vgb) (including the native promoter), cloned into the vector pUC8 in two constructs containing about 1650 and 850 bp, respectively, of Vitreoscilla DNA downstream of vgb, was transformed into Serratia marcescens. After several transfers of the transformants on selective media, both plasmids became stable in this host and the resulting strains produced hemoglobin. Both transformants were compared, regarding growth in liquid Luria-Bertani (LB) medium, with untransformed S. marcescens and S. marcescens transformed with pUC8. The vgb-bearing strains had about 5 times lower maximum viable cell numbers than the strains without hemoglobin, but the former also had late log or early stationary phase cells that were 5-10 times larger than those of the latter. Further, on a dry cell mass basis the presence of vgb inhibited cell growth in liquid media. In contrast, growth of the vgb-bearing strains on LB plates based on cell mass (determined from colony size) was markedly enhanced compared with that of the pUC8 transformant. Respiration of the vgb-bearing strains was lower than that of the strains without vgb on a cell mass basis. These results show that the presence of vgb can have idiosyncratic effects and is not always an aid to cell growth so that its use for genetic engineering must be tested on a case by case basis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号