首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 685 毫秒
1.
The process of RNA incorporation into nascent virions is thought to be critical for efficient retroviral particle assembly and production. Here we show that human immunodeficiency virus type 1 mutant particles (which are highly unstable and break down soon after release from the cell) lacking nucleocapsid (NC) core protein-mediated RNA incorporation are produced efficiently and can be recovered at the normal density when viral protease function is abolished. These results demonstrate that RNA binding by Gag is not necessary for retroviral particle assembly. Rather, the RNA interaction with NC is critical for retroviral particle structural stability subsequent to release from the membrane and protease-mediated Gag cleavage. Thus, the NC-RNA interaction, and not simply the presence of RNA, provides the virus with a structural function that is critical for stable retroviral particle architecture.  相似文献   

2.
A single retroviral protein, termed Gag, is sufficient for assembly of retrovirus-like particles in mammalian cells. Gag normally selects the genomic RNA of the virus with high specificity; the nucleocapsid (NC) domain of Gag plays a crucial role in this selection process. However, encapsidation of the viral RNA is completely unnecessary for particle assembly. We previously showed that mutant murine leukemia virus (MuLV) particles that lack viral RNA because of a deletion in the cis-acting packaging signal ("Psi") in the genomic RNA compensate for the loss of the viral RNA by incorporating cellular mRNA. The RNA in wild-type and Psi- particles was also found to be necessary for virion core structure. In the present work, we explored the role of RNA in MuLV particles that lack genomic RNA because of mutations in the NC domain of Gag. Using a fluorescent dye assay, we observed that NC mutant particles contain the same amount of RNA that wild-type virions do. Surprisingly enough, these particles contained large amounts of rRNAs. Furthermore, ribosomal proteins were detected by immunoblotting, and ribosomes were observed inside the particles by electron microscopy. The biological significance of the presence of ribosomes in NC mutant particles lacking genomic RNA is discussed.  相似文献   

3.
4.
Genetic Determinants of Rous Sarcoma Virus Particle Size   总被引:6,自引:6,他引:0       下载免费PDF全文
The Gag proteins of retroviruses are the only viral products required for the release of membrane-enclosed particles by budding from the host cell. Particles released when these proteins are expressed alone are identical to authentic virions in their rates of budding, proteolytic processing, and core morphology, as well as density and size. We have previously mapped three very small, modular regions of the Rous sarcoma virus (RSV) Gag protein that are necessary for budding. These assembly domains constitute only 20% of RSV Gag, and alterations within them block or severely impair particle formation. Regions outside of these domains can be deleted without any effect on the density of the particles that are released. However, since density and size are independent parameters for retroviral particles, we employed rate-zonal gradients and electron microscopy in an exhaustive study of mutants lacking the various dispensable segments of Gag to determine which regions would be required to constrain or define the particle dimensions. The only sequence found to be absolutely critical for determining particle size was that of the initial capsid cleavage product, CA-SP, which contains all of the CA sequence plus the spacer peptides located between CA and NC. Some regions of CA-SP appear to be more important than others. In particular, the major homology region does not contribute to defining particle size. Further evidence for interactions among CA-SP domains was obtained from genetic complementation experiments using mutant ΔNC, which lacks the RNA interaction domains in the NC sequence but retains a complete CA-SP sequence. This mutant produces low-density particles heterogeneous in size. It was rescued into particles of normal size and density, but only when the complementing Gag molecules contained the complete CA-SP sequence. We conclude that CA-SP functions during budding in a manner that is independent of the other assembly domains.  相似文献   

5.
The human immunodeficiency virus (HIV) Pr55Gag precursor proteins direct virus particle assembly. While Gag-Gag protein interactions which affect HIV assembly occur in the capsid (CA) domain of Pr55Gag, the nucleocapsid (NC) domain, which functions in viral RNA encapsidation, also appears to participate in virus assembly. In order to dissect the roles of the NC domain and the p6 domain, the C-terminal Gag protein domain, we examined the effects of NC and p6 mutations on virus assembly and RNA encapsidation. In our experimental system, the p6 domain did not appear to affect virus release efficiency but p6 deletions and truncations reduced the specificity of genomic HIV-1 RNA encapsidation. Mutations in the nucleocapsid region reduced particle release, especially when the p2 interdomain peptide or the amino-terminal portion of the NC region was mutated, and NC mutations also reduced both the specificity and the efficiency of HIV-1 RNA encapsidation. These results implicated a linkage between RNA encapsidation and virus particle assembly or release. However, we found that the mutant ApoMTRB, in which the nucleocapsid and p6 domains of HIV-1 Pr55Gag were replaced with the Bacillus subtilis MtrB protein domain, released particles efficiently but packaged no detectable RNA. These results suggest that, for the purposes of virus-like particle assembly and release, NC can be replaced by a protein that does not appear to encapsidate RNA.  相似文献   

6.
The subcellular location at which genomic RNA is packaged by Gag proteins during retrovirus assembly remains unknown. Since the membrane-binding (M) domain is most critical for targeting Gag to the plasma membrane, changes to this determinant might alter the path taken through the cell and reduce the efficiency of genome packaging. In this report, a Rous sarcoma virus (RSV) mutant having two acidic-to-basic substitutions in the M domain is described. This mutant, designated Super M, produced particles much faster than the wild type, but the mutant virions were noninfectious and contained only 1/10 the amount of genomic RNA found in wild-type particles. To identify the cause(s) of these defects, we considered data that suggest that RSV Gag traffics through the nucleus to package the viral genome. Although inhibition of the CRM-1 pathway of nuclear export caused the accumulation of wild-type Gag in the nucleus, nuclear accumulation did not occur with Super M. The importance of the nucleocapsid (NC) domain in membrane targeting was also determined, and, importantly, deletion of the NC sequence prevented plasma membrane localization by wild-type Gag but not by Super M Gag. Based on these results, we reasoned that the enhanced membrane-targeting properties of Super M inhibit genome packaging. Consistent with this interpretation, substitutions that reestablished the wild-type number of basic and acidic residues in the Super M Gag M domain reduced the budding efficiency and restored genome packaging and infectivity. Therefore, these data suggest that Gag targeting and genome packaging are normally linked to ensure that RSV particles contain viral RNA.  相似文献   

7.
D T Poon  J Wu    A Aldovini 《Journal of virology》1996,70(10):6607-6616
Interaction of the human immunodeficiency virus type 1 (HIV-1) Gag precursor polyprotein (Pr55Gag) with the viral genomic RNA is required for retroviral replication. Mutations that reduce RNA packaging efficiency have been localized to the highly basic nucleocapsid (NC) p7 domain of Pr55Gag, but the importance of the basic amino acid residues in specific viral RNA encapsidation and infectivity has not been thoroughly investigated in vivo. We have systematically substituted the positively charged residues of the NC domain of Pr55Gag in an HIV-1 viral clone by using alanine scanning mutagenesis and have assayed the effects of these mutations on virus replication, particle formation, and RNA packaging in vivo. Analysis of viral clones with single substitutions revealed that certain charged amino acid residues are more critical for RNA packaging efficiency and infectivity than others. Analysis of viral clones with multiple substitutions indicates that the presence of positive charge in each of three independent domains--the zinc-binding domains, the basic region that links them, and the residues that Hank the two zinc-binding domains--is necessary for efficient HIV-1 RNA packaging. Finally, we note that some mutations affect virus replication more drastically than RNA incorporation, providing in vivo evidence for the hypothesis that NC p7 may be involved in aspects of the HIV life cycle in addition to RNA packaging.  相似文献   

8.
9.
The RNA packaging process for retroviruses involves a recognition event of the genome-length viral RNA by the viral Gag polyprotein precursor (PrGag), an important step in particle morphogenesis. The mechanism underlying this genome recognition event for most retroviruses is thought to involve an interaction between the nucleocapsid (NC) domain of PrGag and stable RNA secondary structures that form the RNA packaging signal. Presently, there is limited information regarding PrGag-RNA interactions involved in RNA packaging for the deltaretroviruses, which include bovine leukemia virus (BLV) and human T-cell leukemia virus types 1 and 2 (HTLV-1 and -2, respectively). To address this, alanine-scanning mutagenesis of BLV PrGag was done with a virus-like particle (VLP) system. As predicted, mutagenesis of conserved basic residues as well as residues of the zinc finger domains in the BLV NC domain of PrGag revealed residues that led to a reduction in viral RNA packaging. Interestingly, when conserved basic residues in the BLV MA domain of PrGag were mutated to alanine or glycine, but not when mutated to another basic residue, reductions in viral RNA packaging were also observed. The ability of PrGag to be targeted to the cell membrane was not affected by these mutations in MA, indicating that PrGag membrane targeting was not associated with the reduction in RNA packaging. These observations indicate that these basic residues in the MA domain of PrGag influence RNA packaging, without influencing Gag membrane localization. It was further observed that (i) a MA/NC double mutant had a more severe RNA packaging defect than either mutant alone, and (ii) RNA packaging was not found to be associated with transient localization of Gag in the nucleus. In summary, this report provides the first direct evidence for the involvement of both the BLV MA and NC domains of PrGag in viral RNA packaging.  相似文献   

10.
Recently, it was shown that actin molecules are present in human immunodeficiency virus type 1 (HIV-1) particles. We have examined the basis for incorporation and the location of actin molecules within HIV-1 and murine retrovirus particles. Our results show that the retroviral Gag polyprotein is sufficient for actin uptake. Immunolabeling studies demonstrate that actin molecules localize to a specific radial position within the immature particle, clearly displaced from the matrix domain underneath the viral membrane but in proximity to the nucleocapsid (NC) domain of the Gag polyprotein. When virus or subviral Gag particles were disrupted with nonionic detergent, actin molecules remained associated with the disrupted particles. Actin molecules remained in a stable complex with the NC cleavage product (or an NC-RNA complex) after treatment of the disrupted HIV-1 particles with recombinant HIV-1 protease. In contrast, matrix and capsid molecules were released. The same result was obtained when mature HIV-1 particles were disrupted with detergent. Taken together, these results indicate that actin molecules are associated with the NC domain of the viral polyprotein.  相似文献   

11.
During human immunodeficiency virus, type 1 (HIV-1) assembly, Gag polypeptides multimerize into immature HIV-1 capsids. The cellular ATP-binding protein ABCE1 (also called HP68 or RNase L inhibitor) appears to be critical for proper assembly of the HIV-1 capsid. In primate cells, ABCE1 associates with Gag polypeptides present in immature capsid assembly intermediates. Here we demonstrate that the NC domain of Gag is critical for interaction with endogenous primate ABCE1, whereas other domains in Gag can be deleted without eliminating the association of Gag with ABCE1. NC contains two Cys-His boxes that form zinc finger motifs and are responsible for encapsidation of HIV-1 genomic RNA. In addition, NC contains basic residues known to play a critical role in nonspecific RNA binding, Gag-Gag interactions, and particle formation. We demonstrate that basic residues in NC are needed for the Gag-ABCE1 interaction, whereas the cysteine and histidine residues in the zinc fingers are dispensable. Constructs that fail to interact with primate ABCE1 or interact poorly also fail to form capsids and are arrested at an early point in the immature capsid assembly pathway. Whereas others have shown that basic residues in NC bind nonspecifically to RNA, which in turn scaffolds or nucleates assembly, our data demonstrate that the same basic residues in NC act either directly or indirectly to recruit a cellular protein that also promotes capsid formation. Thus, in cells, basic residues in NC appear to act by two mechanisms, recruiting both RNA and a cellular ATPase in order to facilitate efficient assembly of HIV-1 capsids.  相似文献   

12.
Human immunodeficiency virus type 1 (HIV-1) particle formation and the subsequent initiation of protease-mediated maturation occur predominantly on the plasma membrane. However, the mechanism by which HIV-1 assembly is targeted specifically to the plasma membrane versus intracellular membranes is largely unknown. Previously, we observed that mutations between residues 84 and 88 of the matrix (MA) domain of HIV-1 Gag cause a retargeting of virus particle formation to an intracellular site. In this study, we demonstrate that the mutant virus assembly occurs in the Golgi or in post-Golgi vesicles. These particles undergo core condensation in a protease-dependent manner, indicating that virus maturation can occur not only on the plasma membrane but also in the Golgi or post-Golgi vesicles. The intracellular assembly of mutant particles is dependent on Gag myristylation but is not influenced by p6(Gag) or envelope glycoprotein expression. Previous characterization of viral revertants suggested a functional relationship between the highly basic domain of MA (amino acids 17 to 31) and residues 84 to 88. We now demonstrate that mutations in the highly basic domain also retarget virus particle formation to the Golgi or post-Golgi vesicles. Although the basic domain has been implicated in Gag membrane binding, no correlation was observed between the impact of mutations on membrane binding and Gag targeting, indicating that these two functions of MA are genetically separable. Plasma membrane targeting of Gag proteins with mutations in either the basic domain or between residues 84 and 88 was rescued by coexpression with wild-type Gag; however, the two groups of MA mutants could not rescue each other. We propose that the highly basic domain of MA contains a major determinant of HIV-1 Gag plasma membrane targeting and that mutations between residues 84 and 88 disrupt plasma membrane targeting through an effect on the basic domain.  相似文献   

13.
The process of retroviral RNA encapsidation involves interaction between trans-acting viral proteins and cis-acting RNA elements. The encapsidation signal on human immunodeficiency virus type 1 (HIV-1) RNA is a multipartite structure composed of functional stem-loop structures. The nucleocapsid (NC) domain of the Gag polyprotein precursor contains two copies of a Cys-His box motif that have been demonstrated to be important in RNA encapsidation. To further characterize the role of the Cys-His boxes of the HIV-1 NC protein in RNA encapsidation, the relative efficiency of RNA encapsidation for virus particles that contained mutations within the Cys-His boxes was measured. Mutations that disrupted the first Cys-His box of the NC protein resulted in virus particles that encapsidated genomic RNA less efficiently and subgenomic RNA more efficiently than did wild-type virus. Mutations within the second Cys-His box did not significantly affect RNA encapsidation. In addition, a full complement of wild-type NC protein in virus particles is not required for efficient RNA encapsidation or virus replication. Finally, both Cys-His boxes of the NC protein play additional roles in virus replication.  相似文献   

14.
15.
The Rous sarcoma virus (RSV) Gag precursor polyprotein is the only viral protein which is necessary for specific packaging of genomic RNA. To map domains within Gag which are important for packaging, we constructed a series of Gag mutations in conjunction with a protease (PR) active-site point mutation in a full-length viral construct. We found that deletion of either the matrix (MA), the capsid (CA), or the protease (PR) domain did not abrogate packaging, although the MA domain is likely to be required for proper assembly. A previously characterized deletion of both Cys-His motifs in RSV nucleocapsid protein (NC) reduced both the efficiency of particle release and specific RNA packaging by 6- to 10-fold, consistent with previous observations that the NC Cys-His motifs played a role in assembly and RNA packaging. Most strikingly, when amino acid changes at Arg 549 and 551 immediately downstream of the distal NC Cys-His box were made, RNA packaging was reduced by more than 25-fold with no defect in particle release, demonstrating the importance of this basic amino acid region in packaging. We also used the yeast three-hybrid system to study avian retroviral RNA-Gag interactions. Using this assay, we found that the interactions of the minimal packaging region (Mpsi) with Gag are of high affinity and specificity. Using a number of Mpsi and Gag mutants, we have found a clear correlation between a reporter gene activation in a yeast three-hybrid binding system and an in vivo packaging assay. Our results showed that the binding assay provides a rapid genetic assay of both RNA and protein components for specific encapsidation.  相似文献   

16.
Human immunodeficiency virus (HIV) type 1 particles assemble at the plasma membrane of cells in a manner similar to that of the type C oncoretroviruses. The Pr55(Gag) molecule directs the assembly process and is sufficient for particle assembly in the absence of all other viral gene products. The I domain is an assembly domain that has been previously localized to the nucleocapsid (NC) region of Gag. In this study we utilized a series of Gag-green fluorescent protein (GFP) fusion proteins to precisely identify sequences that constitute the N-terminal I domain of Pr55(Gag). The minimal sequence required for the I domain was localized to the extreme N terminus of NC. Two basic residues (arginine 380 and arginine 384) within the initial seven residues of NC were found to be critical for the function of the N-terminal I domain. The presence of positive charge alone in these two positions, however, was not sufficient to mediate the formation of dense Gag particles. The I domain was required for the formation of detergent-resistant complexes of Gag protein, and confocal microscopy demonstrated that the I domain was also required for the formation of punctate foci of Gag proteins at the plasma membrane. Electron microscopic analysis of cells expressing Gag-GFP fusion constructs with an intact I domain revealed numerous retrovirus-like particles (RVLPs) budding from the plasma membrane, while I domain-deficient constructs failed to generate visible RVLPs. These results provide evidence that Gag-Gag interactions mediated by the I domain play a central role in the assembly of HIV particles.  相似文献   

17.
The molecular mechanism by which retroviral Gag proteins are directed to the plasma membrane for the formation of particles (budding) is unknown, but it is widely believed that the MA domain, located at the amino terminus, plays a critical role. Consistent with this idea, we found that small deletions in this segment of the Rous sarcoma virus Gag protein completely blocked particle formation. The mutant proteins appear to have suffered only localized structural damage since they could be rescued (i.e., packaged into particles) when coexpressed with Gag proteins that are competent for particle formation. To our surprise, the effects of the MA deletions could be completely suppressed by fusing as few as seven residues of the myristylated amino terminus of the oncoprotein p60src to the beginning of the mutant Gag proteins. Particles produced by the chimeras were of the same density as the wild type. Two myristylated peptides having sequences distinct from that of p60src were entirely unable to suppress MA deletions, indicating that myristate alone is not a sufficient membrane targeting signal. We hypothesize that the amino terminus of p60src suppresses the effects of MA deletions by diverting the Rous sarcoma virus Gag protein from its normal site of assembly to the Src receptor for particle formation.  相似文献   

18.
Budding of C-type retroviruses begins when the viral Gag polyprotein is directed to the plasma membrane by an N-terminal membrane-binding (M) domain. While dispersed basic amino acids within the M domain are critical for stable membrane association and consequent particle assembly, additional residues or motifs may be required for specific plasma membrane targeting and binding. We have identified an assembly-defective Rous sarcoma virus (RSV) Gag mutant that retains significant membrane affinity despite having a deletion of the fourth alpha-helix of the M domain. Examination of the mutant protein's subcellular distribution revealed that it was not localized to the plasma membrane but instead was mistargeted to intracytoplasmic membranes. Specific plasma membrane targeting was restored by the addition of myristate plus a single basic residue, by multiple basic residues, or by the heterologous hydrophobic membrane-binding domain from the cellular Fyn protein. These results suggest that the fourth alpha-helix of the RSV M domain promotes specific targeting of Gag to the plasma membrane, either through a direct interaction with plasma membrane phospholipids or a membrane-associated cellular factor or by maintaining the conformation of Gag to expose specific plasma membrane targeting sequences.  相似文献   

19.
Nucleocytoplasmic shuttling of the Rous sarcoma virus (RSV) Gag polyprotein is an integral step in virus particle assembly. A nuclear export signal (NES) was previously identified within the p10 domain of RSV Gag. Gag mutants containing deletions of the p10 NES or mutations of critical hydrophobic residues at positions 219, 222, 225, or 229 become trapped within the nucleus and exhibit defects in the efficiency of virus particle release. To investigate other potential roles for Gag nuclear trafficking in RSV replication, we created viruses bearing NES mutant Gag proteins. Viruses carrying p10 mutations produced low levels of particles, as anticipated, and those particles that were released were noninfectious. The p10 mutant viruses contained approximately normal amounts of Gag, Gag-Pol, and Env proteins and genomic viral RNA (vRNA), but several major structural defects were found. Thin-section transmission electron microscopy revealed that the mature particles appeared misshapen, while the viral cores were cylindrical, horseshoe-shaped, or fragmented, with some particles containing multiple small, electron-dense aggregates. Immature virus-like particles produced by the expression of Gag proteins bearing p10 mutations were also aberrant, with both spherical and tubular filamentous particles produced. Interestingly, the secondary structure of the encapsidated vRNA was altered; although dimeric vRNA was predominant, there was an additional high-molecular-weight fraction. Together, these results indicate that the p10 NES domain of Gag is critical for virus replication and that it plays overlapping roles required for the nuclear shuttling of Gag and for the maintenance of proper virion core morphology.  相似文献   

20.
The matrix domain (MA) is important for targeting of human immunodeficiency virus type 1 Gag assembly to the plasma membrane, envelope incorporation into virions, preintegration complex import into the nucleus, and nuclear export of viral RNA. Myristylation and phosphorylation are key regulatory events for MA function. Previous studies have indicated that MA phosphorylation at serine (Ser) residues is important for viral replication. This study defines the molecular mechanisms of virus particle assembly and infectivity through a detailed study of the role of MA serine phosphorylation. We show that the combined mutation of Ser residues at positions 9, 67, 72, and 77 impairs viral infectivity in dividing and nondividing cells, although the assembly of these Ser mutant viruses is comparable to that of wild-type virus. This defect can be rescued by pseudotyping these mutant viruses with vesicular stomatitis virus G protein, suggesting that these serine residues are critical in an early postentry step of viral infection. The phosphorylation level of MA in defective mutant viruses was severely reduced compared to that of the wild type, suggesting that phosphorylation of Ser-9, -67, -72, and -77 is important for an early postentry step during virus infection.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号