首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Baer  J. 《Journal of fish biology》2004,65(S1):314-314
In spring 2001 and 2002 a small stream was stocked with tagged hatchery‐reared yearling brown trout ( Salmo trutta ), in order to study their influence on the resident brown trout population. The stream was separated into six sections: two sections without stocking, two sections where stocking doubled the trout population and two sections where the fish population was quadrupled. The working hypothesis was that due to food limitation (competition) growth of the wild fish will be negatively influenced by stocking, and wild fish will be displaced by the (possibly more aggressive) hatchery fish. Surprisingly, growth rate of wild and stocked fish of the same age was similar and independent of stocking density. Two main reasons may be responsible for this finding: only a low percentage of the stocked fish remained in the stream, and food was not limited during summer. Only 12–19% of the stocked fish were recaptured after six months, in contrats to 40–70% of one‐year old and up to 100% of older wild trout. The wild fish were not displaced by hatchery‐reared fish: During summer the wild fish remained more or less stationary, whereas most of the stocked trout had left their release site. The results indicate that in a natural stream stocking of hatchery reared brown trout does not influence negatively growth and movement of the wild fish independent of stocking density.  相似文献   

2.
The population density, age structure, biomass, growth and production of brown trout were investigated in four tributaries of the upper River Wye. The populations at each site were largely maintained by immigration from nursery areas. Abundance of separate year classes at sites on the three largest tributaries reached a peak at age 2+. On the smallest stream numbers reached a peak at 1+. Recruitment occurred throughout the year but decreased with age of year classes. Maximum O+ densities ranged from 0.04 to 0.89 m−2, and >0+ densities from 0.13 to 0.59 m−2. Average total biomass in 1975 ranged from 2.6 to 14.2 g m−2. Within the study sites annual trout production in 1975 ranged from 2.9–19.7 g m−2. Production values were dependent on age structure and population mobility at the study sites. In the three largest streams 2+ and 3+ fish contributed 66.3–88.3% of total production whilst 1+ and 2+ fish contributed 74.5–84.5 % of the total in the smallest stream. The mobile (non-resident) component of the population accounted for up to 60–70% of production at certain times of the year, but over the year (1976) accounted for =30 % of total production. The resident component of the highest annual production value (19.7 g m−2) was estimated to be between 15.0 and 18.2 g m−2.  相似文献   

3.
1. Resident brown trout Salmo trutta in the Esva River basin (north Spain) live in a patchy environment with tracts of riparian forest or meadow along stream banks. This study assessed whether the reproductive traits of brown trout from four contrasting sites reflected site-specific factors.
2. Length at maturity (10.5–11 cm of 1 + individuals) was the same in the four sites examined but slowest growers in slow-growing sub-populations delayed maturity for 1 year relative to fast-growing fish. The analysis of monthly variations in egg size and number suggest that two 'decisions' in two consecutive years are required to complete spawning. The first concerns the number of eggs, determined when trout are still 0 +, and the second concerns egg size.
3. At three sites, egg size and number did not differ significantly between years but highly significant interannual variations were apparent at another site. Fish length was the major determinant of egg size and number at all sites but for any given length, brown trout at sites where the fish exhibited higher growth rates spawned more, but smaller, eggs than those at slow-growing sites. This spatial pattern was identical to the temporal pattern exhibited by trout at another site. The combination of temporal (year-to-year) and spatial (between rivers) variations in egg size and number showed a significant negative correlation, supporting the operation of a trade-off between these two traits.
4. The trade-off between egg size and number seems to be determined by site-specific factors, with slow-growing trout at sites which are fully covered by canopy spawning fewer, but larger, eggs than fast-growers in unshaded sites.  相似文献   

4.
The movement of individuals within preferred areas is reduced by a high availability of food and information about its distribution, while high number of competitors promotes increased movement. Experienced animals use information about social and physical environment to improve resources exploitation, tended to maintain positions within the preferred areas and reuse the environment that is often referred to as site fidelity. In this study, radio‐telemetry was used to observe the movements of 98 adult brown trout, Salmo trutta, in oligotrophic streams with different population densities; to determine subpopulation site fidelity, 5,195 conspecifics from 14 subpopulations were individually tagged during spring and autumn. During a 7‐year‐long field study, we tested the hypothesis that brown trout individuals from subpopulations with high site fidelity would display lower movement. The hypothesis was supported, and reduced movement was further related to high subpopulation density in association with high slope indicating the physical environment‐influenced movement. The probability of contact between individuals increased with subpopulation site fidelity and subpopulation density. No influence of food abundance on brown trout movement was found. Furthermore, increased body size predicted higher movement (and vice versa). The least movement occurred during the day and during the full moons. Our study tended to show that individuals reused preferred areas and needed less movement to exploit available resources.  相似文献   

5.
Density and composition of benthic invertebrates and the diet of brown trout Salmo trutta and Alpine bullhead Cottus poecilopus were studied at two sites in one Norwegian stream. The sites were separated by an impassable waterfall, and brown trout density was five to 10 times higher at the upper, allopatric site than downstream where it lived in sympatry with the Alpine bullhead. Benthic invertebrate communities did not differ between sites; however, the size distribution of chironomids and trichopterans were skewed towards lighter individuals at the sympatric site. Diet composition suggested that sympatric brown trout foraged more on invertebrate drift and from the surface than allopatric brown trout. Alpine bullhead diet did not differ significantly from brown trout diet, except that the Alpine bullhead fed on heavier individual prey within a few taxa and did not consume chironomid pupae or surface insects. The collected data support the hypothesis that brown trout living in sympatry with Alpine bullhead feed at locations with higher predation risk, which is a probable explanation for their lower population density.  相似文献   

6.
Variations in distributions and behaviours of Atlantic salmon Salmo salar in allopatry (homogeneous) and in sympatry with brown trout Salmo trutta (mixed) were observed before, during and after 2 day periods of dewatering in a large glass-sided indoor stream at densities typical of Scottish upland streams. Brown trout utilized pools more than Atlantic salmon at normal flows and in both species the majority of fishes moved into pools during dewatering. There was no significant effect of brown trout, which was the more dominant species, on the overall ability of Atlantic salmon to use pool habitat as a refuge during dewatering. Within mixed and homogeneous groups, average feeding levels decreased during dewatering. The highest ranking fish, which was always a brown trout in mixed groups, predominantly monopolized the pool and other individuals in pools adopted a more cryptic, stationary behaviour. Dewatering effectively increased local population density with the result that dominance status became much more important in maintaining food intake, and polarization between the top ranking fish and others increased. During the first day of dewatering, there was extreme behavioural polarization such that the dominant fish exhibited most aggression and least feeding within the group. Among dominant fish on the second day of dewatering, aggression had largely abated and feeding had returned to pretreatment levels despite the reduced average feeding within the group. The main difference between mixed and homogeneous groups was in the behaviour of the most dominant Atlantic salmon, which was near-despotic in allopatry and subordinate to brown trout in sympatry.  相似文献   

7.
Movements of resident brown trout (age 2+ to 9+ years) and young Atlantic salmon (age 1+), stocked as fry, were studied in July, August and September in a coastal stream in northern Norway. Between 85 and 89% of the brown trout were recaptured in the study area (346m, 1326m2) within 45m of their release point throughout the investigation period. Most specimens had moved less than 150m. Trout movements were related to local variation in density. Trout occupying those sections of stream with the lowest fish densities (5.3–10.9 fish 100m?2) had a significantly lower movement rate than fish from sections with densities between 13.7 and 31.5 fish 100m?2. Trout that moved from their marking section were significantly larger than specimens that did not leave their original site. There was a significant correlation between permanence of station each month and the mean water level that month. The majority of the trout (47%) were caught at undercut stream banks or at sites in the proximity of these. A decrease in water level during the study period resulted in a high loss (36%) of such habitat, probably forcing some individuals to move. The recapture data indicate that the trout population consists of one small (c. 15–20%) mobile, and one large sedentary component. Young salmon displayed high station permanence in July and August (93% and 96%). However, in the autumn they exhibited a significant downstream movement, and only 73% were recaptured within their release section. This movement was significantly higher for larger specimens, and is thought to occur because of a pre-winter change in habitat, initiated by a decline in stream temperature. In contrast to trout, salmon in sections containing the lowest densities (22.0–25.0 fish 100m?2) did not show significantly lower movement rates when compared with salmon at higher densities (32.2–46.3 and 51.8–60.6 fish 100m?2). The spatial distribution of young salmon indicated the formation of territorial mosaics over the stream bed, which are thought to reduce intraspecific competition.  相似文献   

8.
A field experiment during autumn, winter and spring was performed in a small stream on the west coast of Sweden, aiming to examine the direct and indirect consequences of density-dependent intercohort competition in brown trout Salmo trutta . Individual growth rate, recapture rate and site fidelity were used as response variables in the young-of-the-year (YOY) age class, experiencing two different treatments: presence or absence of yearlings and over-yearlings (age ≥ 1+ year individuals). YOY individuals in stream sections with reduced density of age ≥ 1+ year individuals grew significantly faster than individuals experiencing natural cohort structure. In the latter, growth rate was negatively correlated with density and biomass of age ≥ 1+ year individuals, which may induce indirect effects on year-class strength through, for example, reduced fecundity and survival. Movement of YOY individuals and turnover rate ( i.e. proportion of untagged individuals) were used to demonstrate potential effects of intercohort competition on site fidelity. While YOY movement was remarkably restricted (83% recaptured within 50 m from the release points), turnover rate was higher in sections with reduced density of age ≥1+ year individuals, suggesting that reduced density of age ≥1+ year individuals may have released favourable microhabitats.  相似文献   

9.
Juvenile Atlantic salmon and brown trout were depleted at three sites ( c . 108–380 m2) of a natural stream during the summer months of 1991 and 1992. Local population changes and movements of fish marked in sections adjacent to each depleted area were monitored thereafter. There was very little movement of marked salmon parr into the central regions of the depleted areas following the immediate post-marking period. Upstream movement by young-of-the-year fish from high density sections in mid-late summer was noted for trout but not salmon. Unmarked 1-year-old salmon parr immigrated into depleted areas in June 1992, and the pattern of recolonization was consistent with migration upstream from the adjoining river. It is concluded that resident salmon were very strongly site-attached and resource tracking was of no functional significance as a compensatory mortality mechanism. The occurrence of a long distance migratory component in the population during early-mid summer indicates that this, rather than local resource tracking, constitutes a potential compensatory mechanism.  相似文献   

10.
The movement and mortality of stocked brown trout Salmo trutta were investigated using radio telemetry. Four brown trout left the study area whereas the remaining fish were stationary. After 5 weeks, 13 out of 50 tagged brown trout were still alive in the stream. Surviving fish had a significantly lower mean movement per day than fish, which later either died or disappeared. This difference in behaviour was most pronounced 2 to 8 days after release. Predation by the otter Lutra lutra was probably the main cause of the observed mortality.  相似文献   

11.
Movements of native brown trout, Salmo trutta , 1 + and older, were limited with up to 93% of recaptured marked fish occupying sites where previously caught. Movements > 50 m were rare with the majority < 15 m. Between sampling occasions, the population could be separated into a static component and a smaller mobile component but there was no evidence of a permanently mobile group. The proportion of mobile native fish increased after stocking with hatchery-reared trout. Displaced native trout (1 + and older) showed the ability to home from 75 m upstream to 111 m downstream of a release site.  相似文献   

12.
An attempt was made to extend the area of distribution of a native population of brown trout Salmo trutta belonging to a Mediterranean lineage (ML), which has maintained itself in the Dranse d'Abondance, a fast-flowing alpine stream (Haute-Savoie, France), despite several decades of intensive restocking with brown trout derived from the Atlantic lineage (AL). This was done by releasing an ML component into the predominantly AL population still present on the Ugine, the main tributary of the Dranse d'Abondance. This strategy of rehabilitation restocking was tested using fluoro-marked juveniles produced from a captive breeding stock derived from the wild Dranse d'Abondance ML stock. Samples of 0+ year fish were collected over the period 1995–2003 in order to assess the impact of the restocking. Percentages of fluoro-marked otoliths revealed significant contributions of ML restocking in the 0+ year autumnal standing population, with levels ranging from 34·3 to 61·4%. The change in the genetic characteristics of the 0+ year population produced by natural recruitment was monitored by analysing the unmarked subjects. Frequencies observed at two microsatellite loci revealed a considerable rise (from 0 to 60%) in the level of Mediterranean alleles in the natural 0+ year population since the introduction of restocking using ML individuals.  相似文献   

13.
SUMMARY. 1. Habitat utilization, as well as inter- and intraspecific relations of different size groups of arctic charr (Salvelinus alpinus (L.)) and brown trout (Salmo trutta L.) in Lake Atnsjø, south-east Norway, were investigated by analysing food and spatial niches from monthly benthic and pelagic gillnet catches during June-October 1985.
2. Small individuals (150–230 mm) of both arctic charr and brown trout occurred in shallow benthic habitats. However, they were spatially segregated as arctic charr dominated at depths of 5–15 m and brown trout at depths of 0–5 m.
3. Larger (>230 mm) arctic charr and brown trout coexisted in the pelagic zone. Both species occurred mainly in the uppermost 2-3 m of the pelagic, except in August, when arctic charr occurred at high densities throughout the 0–12 m depth interval. On this occasion, arctic charr were segregated in depth according to size, with significantly larger fish in the top 6 m. This was probably due to increased intraspecific competition for food.
4. The two species differed in food choice in both habitats, Arctic charr fed almost exclusively on zooplankton, whereas brown trout had a more variable diet, consisting of surface insects, zooplankton. aquatic insects and fish.
5. The data suggest that the uppermost pelagic was the more favourable habitat for both species. Large individuals having high social position occupied this habitat, whereas small individuals lived in benthic habitat where they were less vulnerable to agonistic behaviour from larger individuals and less exposed to predators. The more aggressive and dominant brown trout occupied the more rewarding part of the benthic habitat.  相似文献   

14.
Synchrony among populations (i.e. spatial covariation in temporal fluctuations of population size or growth rate) is a common feature to many animals. Both large-scale autocorrelated climatic factors (the 'Moran effect') and dispersal between populations are candidates to explain synchrony, although their relative influence is difficult to assess. Only a few investigations have reported patterns of synchrony among freshwater populations, and even fewer directly related these patterns to an environmental variable. In the present study, we analysed the spatio-temporal patterns of fluctuation of 57 brown trout populations widespread across France, each sampled continuously during 5 years. We compared the respective influence of connectivity and stream distance within basins (i.e. that potentially allow a basin-scale dispersal) and environmental factors (hydrological and air temperature variables, available for 37 sites) on the synchrony of brown trout cohort densities (0+, 1+ and adults). A series of Mantel tests revealed that the degree of synchrony was not related to connectivity or stream distance between sites, suggesting no effect of dispersal at the basin-scale. The degree of synchrony among sites for the 0+ fish was significantly related to the degree of hydrological synchrony (based on high flows during the emergence period). For all three age classes, the synchrony in the temperature patterns did not explain synchrony in trout dynamics. Our results allow us to discuss the respective influence of dispersal and climatic factors on the spatio-temporal patterns of trout dynamics at the basin scale.  相似文献   

15.
The marine feeding pattern of anadromous brown trout (sea trout) Salmo trutta and Arctic charr Salvelinus alpinus was studied during June to August in 1992–1993 and 2000–2004 in a fjord in northern Norway. In general sea trout fed proportionally more on fishes than on crustaceans and insects (81, 1 and 18% by mass, respectively) by comparison with Arctic charr (52, 25 and 22% by mass, respectively). Herring Clupea harengus dominated the total fish diet of both species, but the Arctic charr also fed significantly on gadoids and sandlance Ammodytes spp. While sea trout became virtually all piscivorous at fork lengths ( L F) ≥250 mm, the Arctic charr was ≥400 mm L F before shifting totally to a fish diet. Despite annual variation in diet and forage ratios, there was a clear shift in diet from 1992–1993 to 2000–2004. Sandlance and different crustaceans constituted most of the diet during the initial period with a shift towards gadoids and especially herring during the latter period. This shift seemed to be associated with a high abundance of herring larvae during the latter sampling period, indicating a preferential selection on herring when present, particularly by sea trout. Furthermore, an index indicated dietary overlap in years with intensive feeding on herring of both species, and usually differences in the trophic ecology during years feeding mostly on other prey species. In combination, it was hypothesized that the two species reflect the type of marine prey present within a fjord system over time, and therefore provide an index of variation in the production and biological diversity of their potential prey within fjords.  相似文献   

16.
SUMMARY. 1. The sizes of home ranges of juvenile Atlantic salmon (age 1 +) and brown trout (age 2+ to 9+) in a Norwegian coastal stream were estimated by local movements of batch-marked fish from 12.5 and 25 m long sections. Only recoveries made in the release section and in up-and downstream neighbouring sections were considered.
2. There was no significant difference in the average percentage of recaptures of salmon and trout between 12.5 and 25 m sections; a stream area of about 40–50 m2 defines the size of home range for stocks of both species.
3. The fraction of brown trout recaptured in release sections increased with increasing fish densities, indicating a smaller home range under these conditions.  相似文献   

17.
1. Changes in riparian vegetation owing to forest harvesting may affect the input of large wood, a major structural element, to streams. Studies of large wood impacts on stream fish have focused on population‐level responses, whereas little attention has been given to how wood affects fish behaviour. 2. In a laboratory stream experiment, we tested how two size classes of brown trout, Salmo trutta, (mean size of 85 and 125 mm), alone and together, responded to a gradient of large wood in terms of activity, foraging on terrestrial drift and interactions between conspecifics. 3. The results showed that the presence of large wood significantly reduced the overall activity of the fish, the number of agonistic interactions between individuals and the proportion of captured prey. However, activity decreased relatively more than the proportion of captured prey, resulting in a significant positive net effect of wood on the number of prey captures per time spent active (PTA). This indicates that trout living in habitats with high wood density may have a higher net energy gain than trout living in habitats with less wood. 4. There were no observable size‐class differences in the benefits of large wood or in the utilisation of surface‐drifting terrestrial prey. 5. These results suggest that the presence of large wood may be an important factor shaping stream communities and that a lack of structural complexity may decrease energy gain, increase agonistic interactions and, consequently, lower the production of brown trout.  相似文献   

18.
Studies of the brown trout (Salmo trutta) population in the Norwegian subalpine lake, Øvre Heimdalsvatn, over a 50-year period have revealed major changes in population dynamics. In 1958, the population density was high, with individuals stagnating in growth at lengths below 30 cm. After heavy exploitation during the years 1958–1969, the number of older fish declined substantially, and growth rates increased significantly. Since 1969, the European minnow (Phoxinus phoxinus) have been observed in the lake, with increasing densities from 1977–1978 to 1999–2000. The age structure of the brown trout population has changed markedly from the 1960s to the period 1993–2006. Annual recruitment significantly declined, from an average number of 3746 individuals in age-class 4 during the period 1958–1966 to an average of 1668 during the period 1993–2006. However, due to lower exploitation rates, the number of old fish was significantly higher in the latter period. The summer diet of brown trout has changed substantially from a dominance of the large crustaceans Lepidurus arcticus and Gammarus lacustris to a high occurrence of European minnows, while L. arcticus has become practically absent from the diet. There was a negative relationship between brown trout biomass and annual length increment. However, despite a brown trout biomass at the same level during the years 1993–2006 as in the 1960s, annual individual growth rates have significantly declined. The reduced recruitment and reduced annual growth rates of the brown trout, as well as changes in the diet, are most likely related to the introduction and establishment of the invasive species, the European minnow.  相似文献   

19.
We examined prey utilization and energy consumption by brown trout, Salmo trutta, in a cold tailwater (Little Red River, Arkansas, USA; LRR) having low biodiversity and low availability of fish as prey. Stomach content analysis and age estimation were performed on thirty brown trout (10 each of three size classes for a total of 710 trout) collected monthly from an upstream and downstream site over a 1-year period. Diet diversity was low at both sites, as 80% and 70% of all prey consumed by upstream and downstream brown trout, respectively, were isopods. Piscivory (<0.5% of individuals sampled) and consumption of terrestrial invertebrates were rare. There was no relation between diet diversity and trout age, and a very small ontogenetic shift in brown trout diet. Second, we investigated brown trout growth rates relative to prey consumption and temperature. Temperatures and availability of prey were less than required for maximal trout growth. However, prey availability limited trout growth directly, but sub-optimal temperatures probably buffered the effect of this reduced energy consumption by reducing metabolic energy expenditures. Brown trout growth was 54.8–57.0% of the maximum predicted by a bioenergetics model. Instantaneous growth rates for age 1 and adult brown trout were slightly higher for those downstream (0.195) versus those upstream (0.152). Although isopods are abundant within this tailwater to serve as a forage base, the displacement of native fish fauna and subsequent lack of establishment of cold-tolerant forage fish species due to the thermal regime of hypolimnetic release from Greers Ferry Reservoir probably serves as a major barrier to brown trout growth.  相似文献   

20.
In a study of the genetic relationships among 879 anadromous brown trout Salmo trutta from 13 streams at the Island of Gotland, Sweden, using RFLP analysis of a mitochondrial DNA segment (NADH dehydrogenase-1 gene), six haplotypes were detected. Significant genetic divergence was observed among streams as well as between cohorts within streams. Approximately 8–9% of the total variation was due to differences between populations, and 4–5% was explained by differences between cohorts within populations. The female effective population size ( N ef) was assessed from temporal haplotype frequency differences between consecutive cohorts; the estimated average N ef over all populations was just below 30, suggesting that these populations were effectively quite small. With such small effective sizes the populations are expected to loose genetic variability quickly, but the observed levels do not appear particularly low. This indicates that female migration between streams occurs. The observed level of differentiation does not support the presumption that a particular pre-smolt migratory behaviour observed in Gotland streams, with large portions of fry leaving for the sea soon after hatching, results in a reduced homing ability. From a conservation management perspective the Gotland brown trout streams should be regarded as a population system where the vitality and survival of brown trout in one stream is dependent on the opportunity of contact and exchange of individuals from other streams.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号