首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The Gag proteins of Rous sarcoma virus (RSV) and human immunodeficiency virus (HIV) contain small interaction (I) domains within their nucleocapsid (NC) sequences. These overlap the zinc finger motifs and function to provide the proper density to viral particles. There are two zinc fingers and at least two I domains within these Gag proteins. To more thoroughly characterize the important sequence features and properties of I domains, we analyzed Gag proteins that contain one or no zinc finger motifs. Chimeric proteins containing the amino-terminal half of RSV Gag and various portions of the carboxy terminus of murine leukemia virus (MLV) (containing one zinc finger) Gag had only one I domain, whereas similar chimeras with human foamy virus (HFV) (containing no zinc fingers) Gag had at least two. Mutational analysis of the MLV NC sequence and inspection of I domain sequences within the zinc-fingerless C terminus of HFV Gag suggested that clusters of basic residues, but not the zinc finger motif residues themselves, are required for the formation of particles of proper density. In support of this, a simple string of strongly basic residues was found to be able to substitute for the RSV I domains. We also explored the possibility that differences in I domains (e.g., their number) account for differences in the ability of Gag proteins to be rescued into particles when they are unable to bind to membranes. Previously published experiments have shown that such membrane-binding mutants of RSV and HIV (two I domains) can be rescued but that those of MLV (one I domain) cannot. Complementation rescue experiments with RSV-MLV chimeras now map this difference to the NC sequence of MLV. Importantly, the same RSV-MLV chimeras could be rescued by complementation when the block to budding was after, rather than before, transport to the membrane. These results suggest that MLV Gag molecules begin to interact at a much later time after synthesis than those of RSV and HIV.  相似文献   

2.
Retroviral Gag proteins direct the assembly and release of virus particles from the plasma membrane. The budding machinery consists of three small domains, the M (membrane-binding), I (interaction), and L (late or "pinching-off") domains. In addition, Gag proteins contain sequences that control particle size. For Rous sarcoma virus (RSV), the size determinant maps to the capsid (CA)-spacer peptide (SP) sequence, but it functions only when I domains are present to enable particles of normal density to be produced. Small deletions throughout the CA-SP sequence result in the release of particles that are very large and heterogeneous, even when I domains are present. In this report, we show that particles of relatively uniform size and normal density are released by budding when the size determinant and I domains in RSV Gag are replaced with capsid proteins from two unrelated, nonenveloped viruses: simian virus 40 and satellite tobacco mosaic virus. These results indicate that capsid proteins of nonenveloped viruses can interact among themselves within the context of Gag and be inserted into the retroviral budding pathway merely by attaching the M and L domains to their amino termini. Thus, the differences in the assembly pathways of enveloped and nonenveloped viruses may be far simpler than previously thought.  相似文献   

3.
Genetic Determinants of Rous Sarcoma Virus Particle Size   总被引:6,自引:6,他引:0       下载免费PDF全文
The Gag proteins of retroviruses are the only viral products required for the release of membrane-enclosed particles by budding from the host cell. Particles released when these proteins are expressed alone are identical to authentic virions in their rates of budding, proteolytic processing, and core morphology, as well as density and size. We have previously mapped three very small, modular regions of the Rous sarcoma virus (RSV) Gag protein that are necessary for budding. These assembly domains constitute only 20% of RSV Gag, and alterations within them block or severely impair particle formation. Regions outside of these domains can be deleted without any effect on the density of the particles that are released. However, since density and size are independent parameters for retroviral particles, we employed rate-zonal gradients and electron microscopy in an exhaustive study of mutants lacking the various dispensable segments of Gag to determine which regions would be required to constrain or define the particle dimensions. The only sequence found to be absolutely critical for determining particle size was that of the initial capsid cleavage product, CA-SP, which contains all of the CA sequence plus the spacer peptides located between CA and NC. Some regions of CA-SP appear to be more important than others. In particular, the major homology region does not contribute to defining particle size. Further evidence for interactions among CA-SP domains was obtained from genetic complementation experiments using mutant ΔNC, which lacks the RNA interaction domains in the NC sequence but retains a complete CA-SP sequence. This mutant produces low-density particles heterogeneous in size. It was rescued into particles of normal size and density, but only when the complementing Gag molecules contained the complete CA-SP sequence. We conclude that CA-SP functions during budding in a manner that is independent of the other assembly domains.  相似文献   

4.
The retroviral Gag protein plays the central role in the assembly process and can form membrane-enclosed, virus-like particles in the absence of any other viral products. These particles are similar to authentic virions in density and size. Three small domains of the human immunodeficiency virus type 1 (HIV-1) Gag protein have been previously identified as being important for budding. Regions that lie outside these domains can be deleted without any effect on particle release or density. However, the regions of Gag that control the size of HIV-1 particles are less well understood. In the case of Rous sarcoma virus (RSV), the size determinant maps to the CA (capsid) and adjacent spacer sequences within Gag, but systematic mapping of the HIV Gag protein has not been reported. To locate the size determinants of HIV-1, we analyzed a large collection of Gag mutants. To our surprise, all mutants with defects in the MA (matrix), CA, and the N-terminal part of NC (nucleocapsid) sequences produced dense particles of normal size, suggesting that oncoviruses (RSV) and lentiviruses (HIV-1) have different size-controlling elements. The most important region found to be critical for determining HIV-1 particle size is the p6 sequence. Particles lacking all or small parts of p6 were uniform in size distribution but very large as measured by rate zonal gradients. Further evidence for this novel function of p6 was obtained by placing this sequence at the C terminus of RSV CA mutants that produce heterogeneously sized particles. We found that the RSV-p6 chimeras produced normally sized particles. Thus, we present evidence that the entire p6 sequence plays a role in determining the size of a retroviral particle.  相似文献   

5.
The subcellular location at which genomic RNA is packaged by Gag proteins during retrovirus assembly remains unknown. Since the membrane-binding (M) domain is most critical for targeting Gag to the plasma membrane, changes to this determinant might alter the path taken through the cell and reduce the efficiency of genome packaging. In this report, a Rous sarcoma virus (RSV) mutant having two acidic-to-basic substitutions in the M domain is described. This mutant, designated Super M, produced particles much faster than the wild type, but the mutant virions were noninfectious and contained only 1/10 the amount of genomic RNA found in wild-type particles. To identify the cause(s) of these defects, we considered data that suggest that RSV Gag traffics through the nucleus to package the viral genome. Although inhibition of the CRM-1 pathway of nuclear export caused the accumulation of wild-type Gag in the nucleus, nuclear accumulation did not occur with Super M. The importance of the nucleocapsid (NC) domain in membrane targeting was also determined, and, importantly, deletion of the NC sequence prevented plasma membrane localization by wild-type Gag but not by Super M Gag. Based on these results, we reasoned that the enhanced membrane-targeting properties of Super M inhibit genome packaging. Consistent with this interpretation, substitutions that reestablished the wild-type number of basic and acidic residues in the Super M Gag M domain reduced the budding efficiency and restored genome packaging and infectivity. Therefore, these data suggest that Gag targeting and genome packaging are normally linked to ensure that RSV particles contain viral RNA.  相似文献   

6.
7.
The membrane-binding domain of the Rous sarcoma virus Gag protein.   总被引:4,自引:3,他引:1       下载免费PDF全文
The Gag protein of Rous sarcoma virus (RSV) can direct particle assembly and budding at the plasma membrane independently of the other virus-encoded products. A previous deletion analysis has suggested that the first 86 amino acids of RSV Gag constitute a large membrane-binding domain that is absolutely required for these processes. To test this hypothesis, we inserted these residues in place of the N-terminal membrane-binding domain of the pp60v-src, a transforming protein whose biological activity requires plasma membrane localization. The ability of the Src chimera to induce cellular transformation suggests that the RSV sequence indeed contains an independent, functional domain.  相似文献   

8.
It is unclear whether proteolytic processing of the human immunodeficiency virus type 1 (HIV-1) Gag protein is dependent on virus assembly at the plasma membrane. Mutations that prevent myristylation of HIV-1 Gag proteins have been shown to block virus assembly and release from the plasma membrane of COS cells but do not prevent processing of Gag proteins. In contrast, in HeLa cells similar mutations abolished processing of Gag proteins as well as virus production. We have now addressed this issue with CD4+ T cells, which are natural target cells of HIV-1. In these cells, myristylation of Gag proteins was required for proteolytic processing of Gag proteins and production of extracellular viral particles. This result was not due to a lack of expression of the viral protease in the form of a Gag-Pol precursor or a lack of interaction between unmyristylated Gag and Gag-Pol precursors. The processing defect of unmyristylated Gag was partially rescued ex vivo by coexpression with wild-type myristylated Gag proteins in HeLa cells. The cell type-dependent processing of HIV-1 Gag precursors was also observed when another part of the plasma membrane binding signal, a polybasic region in the matrix protein, was mutated. The processing of unmyristylated Gag precursors was inhibited in COS cells by HIV-1 protease inhibitors. Altogether, our findings demonstrate that the processing of HIV-1 Gag precursors in CD4+ T cells occurs normally at the plasma membrane during viral morphogenesis. The intracellular environment of COS cells presumably allows activation of the viral protease and proteolytic processing of HIV-1 Gag proteins in the absence of plasma membrane binding.  相似文献   

9.
The retroviral Gag polyprotein directs virus particle assembly, resulting in the release of virions from the plasma membranes of infected cells. The earliest steps in assembly, those immediately following Gag synthesis, are very poorly understood. For Rous sarcoma virus (RSV), Gag proteins are synthesized in the cytoplasm and then undergo transient nuclear trafficking before returning to the cytoplasm for transport to the plasma membrane. Thus, RSV provides a useful model to study the initial steps in assembly because the early and later stages are spatially separated by the nuclear envelope. We previously described mutants of RSV Gag that are defective in nuclear export, thereby isolating these “trapped” Gag proteins at an early assembly step. Using the nuclear export mutants, we asked whether Gag protein-protein interactions occur within the nucleus. Complementation experiments revealed that the wild-type Gag protein could partially rescue export-defective Gag mutants into virus-like particles (VLPs). Additionally, the export mutants had a trans-dominant negative effect on wild-type Gag, interfering with its release into VLPs. Confocal imaging of wild-type and mutant Gag proteins bearing different fluorescent tags suggested that complementation between Gag proteins occurred in the nucleus. Additional evidence for nuclear Gag-Gag interactions was obtained using fluorescence resonance energy transfer, and we found that the formation of intranuclear Gag complexes was dependent on the NC domain. Bimolecular fluorescence complementation allowed the direct visualization of intranuclear Gag-Gag dimers. Together, these experimental results strongly suggest that RSV Gag proteins are capable of interacting within the nucleus.  相似文献   

10.
R P Bennett  T D Nelle    J W Wills 《Journal of virology》1993,67(11):6487-6498
The Gag protein encoded by Rous sarcoma virus (RSV) is the only viral product required for the process of budding whereby virus particles are formed at the plasma membrane. Deletion analysis of this Gag molecule has revealed several regions (assembly domains) that are important for budding. One of these domains is located at the amino terminus and is needed for membrane binding. Another is located within the carboxy-terminal third of the protein. Though there is little sequence homology among the Gag proteins of unrelated retroviruses, it seemed possible that their assembly domains might be functionally conserved, and to explore this idea, numerous Gag chimeras were made. The results indicate that the first 10 amino acids of the human immunodeficiency virus (HIV) Gag protein can suppress the block to budding caused by deletions in the RSV MA sequence, much as described previously for the first 10 residues from the Src oncoprotein (J.W. Wills, R.C. Craven, R. A. Weldon, Jr., T. D. Nelle, and C.R. Erdie, J. Virol. 65:3804-3812, 1991). In addition, the carboxy-terminal half of the HIV Gag protein was fused to a truncated RSV Gag molecule, mutant Bg-Bs, which is unable to direct core assembly. This chimera was able to produce particles at a rate identical to that of RSV and of a density similar to that of authentic virions. Deletion analysis of the carboxy-terminal chimera revealed two small regions within the HIV NC protein that were sufficient for endowing mutant Bg-Bs with these properties. Chimeras lacking both regions produced particles of a low density, suggesting that these sequences may be involved in the tight packing of Gag molecules during assembly. In a related set of experiments, replacement of the RSV protease with that of HIV resulted in premature processing within the RSV sequence and a block to budding. Particle assembly was restored when the HIV PR activity was inactivated by mutagenesis. Collectively, the data presented here illustrate the functional similarities of Gag proteins from unrelated retroviruses.  相似文献   

11.
In order to track the assembly of murine leukemia virus (MLV), we used fluorescence microscopy to visualize particles containing Gag molecules fused to fluorescent proteins (FPs). Gag-FP chimeras budded from cells to produce fluorescent spots, which passed through the same pore-size filters and sedimented at the same velocity as authentic MLV. N-terminal myristylation of Gag-FPs was necessary for particle formation unless wild-type Gag was coexpressed. By labeling nonmyristylated Gag with yellow FP and wild-type Gag with cyan FP, we could quantitate the coincorporation of two proteins into single particles. This experiment showed that nonmyristylated Gag was incorporated into mixed particles at approximately 50% the efficiency of wild-type Gag. Mutations that inhibit Gag-Gag interactions (K. Alin and S. P. Goff, Virology 216:418-424, 1996; K. Alin and S. P. Goff, Virology 222:339-351, 1996) were then introduced into the capsid (CA) region of Gag-FPs. The mutations P150L and R119C/P133L inhibited fluorescent particle formation by these Gag-FPs, but Gag-FPs containing these mutations could be efficiently incorporated into particles when coexpressed with wild-type Gag. When these mutations were introduced into nonmyristylated Gag-FPs, no incorporation into particles in the presence of wild-type Gag was detected. These data suggest that two independent mechanisms, CA interactions and membrane association following myristylation, cooperate in MLV Gag assembly and budding.  相似文献   

12.
The retroviral structural protein, Gag, is capable of independently assembling into virus-like particles (VLPs) in living cells and in vitro. Immature VLPs of human immunodeficiency virus type 1 (HIV-1) and of Rous sarcoma virus (RSV) are morphologically distinct when viewed by transmission electron microscopy (TEM). To better understand the nature of the Gag-Gag interactions leading to these distinctions, we constructed vectors encoding several RSV/HIV-1 chimeric Gag proteins for expression in either insect cells or vertebrate cells. We used TEM, confocal fluorescence microscopy, and a novel correlative scanning EM (SEM)-confocal microscopy technique to study the assembly properties of these proteins. Most chimeric proteins assembled into regular VLPs, with the capsid (CA) domain being the primary determinant of overall particle diameter and morphology. The presence of domains between matrix and CA also influenced particle morphology by increasing the spacing between the inner electron-dense ring and the VLP membrane. Fluorescently tagged versions of wild-type RSV, HIV-1, or murine leukemia virus Gag did not colocalize in cells. However, wild-type Gag proteins colocalized extensively with chimeric Gag proteins bearing the same CA domain, implying that Gag interactions are mediated by CA. A dramatic example of this phenomenon was provided by a nuclear export-deficient chimera of RSV Gag carrying the HIV-1 CA domain, which by itself localized to the nucleus but relocalized to the cytoplasm in the presence of wild type HIV-1 Gag. Wild-type and chimeric Gag proteins were capable of coassembly into a single VLP as viewed by correlative fluorescence SEM if, and only if, the CA domain was derived from the same virus. These results imply that the primary selectivity of Gag-Gag interactions is determined by the CA domain.  相似文献   

13.
During retrovirus assembly, Gag proteins bind to the inner leaflet of the plasma membrane to initiate the budding process. The molecular basis of this protein-lipid interaction is poorly understood. For the human, immunodeficiency virus type 1 Gag protein, we recently reported that the membrane-binding domain resides within the N-terminal 31 amino acids and consists of two components: myristate and a cluster of basic residues, which together promote membrane binding in vitro and budding in vivo (W. Zhou, L. J. Parent, J. W. Wills, and M. D. Resh, J. Virol. 68:2556-2569, 1994). The positively charged residues associate electrostatically with acidic phospholipids to stabilize membrane binding, while myristate provides membrane-binding energy via hydrophobic interactions. Here we demonstrate that the human immunodeficiency virus type 1 Gag membrane-binding domain can fully replace the membrane-targeting function of the N-terminal 100 residues of the non-myristylated Rous sarcoma virus (RSV) Gag protein. To further explore the importance of myristate and basic residues in membrane binding, we developed a gain-of-function assay whereby budding was restored to defective mutants of RSV Gag. Detailed mutational analysis revealed that the position, number, and context of charged residues are crucial to budding. Myristate provides additional membrane-binding energy, which is critical when a Gag protein is near the threshold of stable membrane association. Finally, viruses with altered matrix (MA) proteins that are noninfectious, even though they produce particles with high efficiency, were identified. Thus, we present the first evidence that the RSV MA sequence plays two distinct roles, membrane binding during particle assembly and a second, as yet undefined function required for viral infectivity.  相似文献   

14.
N K Krishna  R A Weldon  Jr    J W Wills 《Journal of virology》1996,70(3):1570-1579
The Gag proteins of replication-competent retroviruses direct budding at the plasma membrane and are cleaved by the viral protease (PR) just before or very soon after particle release. In contrast, defective retroviruses that bud into the endoplasmic reticulum (ER) have been found, and morphologically these appear to contain uncleaved Gag proteins. From this, it has been proposed that activation of PR may depend upon a host factor found only at the plasma membrane. However, if Gag proteins were cleaved by PR before the particle could pinch off the ER membrane, then the only particles that would remain visible are those that packaged smaller-than-normal amounts of PR, and these would have an immature morphology. To distinguish between these two hypotheses, we made use of the Rous sarcoma virus (RSV) Gag protein, the PR of RSV IS included on each Gag molecule. To target Gag to the ER, a signal peptide was installed at its amino terminus in place of the plasma membrane-binding domain. An intervening, hydrophobic, transmembrane anchor was included to keep Gag extended into the cytoplasm. We found that PR-mediated processing occurred, although the cleavage products were rapidly degraded. When the anchor was removed, allowing the entire protein to be inserted into the lumen of the ER, Gag processing occurred with a high level of efficiency, and the cleavage products were quite stable. Thus, PR activation does not require targeting of Gag molecules to the plasma membrane. Unexpectedly, molecules lacking the transmembrane anchor were rapidly secreted from the cell in a nonmembrane-enclosed form and in a manner that was very sensitive to brefeldin A and monensin. In contrast, the wild-type RSV and Moloney murine leukemia virus Gag proteins were completely insensitive to these inhibitors, suggesting that the normal mechanism of transport to the plasma membrane does not require interactions with the secretory pathway.  相似文献   

15.
Callahan EM  Wills JW 《Journal of virology》2000,74(23):11222-11229
The first 86 residues of the Rous sarcoma virus (RSV) Gag protein form a membrane-binding (M) domain that directs Gag to the plasma membrane during budding. Unlike other retroviral Gag proteins, RSV Gag is not myristylated; however, the RSV M domain does contain 11 basic residues that could potentially interact with acidic phospholipids in the plasma membrane. To investigate this possibility, we analyzed mutants in which basic residues in the M domain were replaced with asparagines or glutamines. The data show that neutralizing as few as two basic residues in the M domain blocked particle release and prevented Gag from localizing to the plasma membrane. Though not as severe, single neutralizations also diminished budding and, when expressed in the context of proviral clones, reduced the ability of RSV to spread in cell cultures. To further explore the role of basic residues in particle production, we added lysines to new positions in the M domain. Using this approach, we found that the budding efficiency of RSV Gag can be improved by adding pairs of lysines and that the basic residues in the M domain can be repositioned without affecting particle release. These data provide the first gain-of-function evidence for the importance of basic residues in a retroviral M domain and support a model in which RSV Gag binds to the plasma membrane via electrostatic interactions.  相似文献   

16.
Retroviral Gag proteins direct virus particle assembly from the plasma membrane (PM). Phosphatidylinositol-(4,5)-bisphosphate [PI(4,5)P2] plays a role in PM targeting of several retroviral Gag proteins. Here we report that depletion of intracellular PI(4,5)P2 and phosphatidylinositol-(3,4,5)-triphosphate [PI(3,4,5)P3] levels impaired Rous sarcoma virus (RSV) Gag PM localization. Gag mutants deficient in nuclear trafficking were less sensitive to reduction of intracellular PI(4,5)P2 and PI(3,4,5)P3, suggesting a possible connection between Gag nuclear trafficking and phosphoinositide-dependent PM targeting.  相似文献   

17.
The retroviral Gag protein is capable of directing the production and release of virus-like particles in the absence of all other viral components. Budding normally occurs after Gag is transported to the plasma membrane by its membrane-targeting and -binding (M) domain. In the Rous sarcoma virus (RSV) Gag protein, the M domain is contained within the first 86 amino acids. When M is deleted, membrane association and budding fail to occur. Budding is restored when M is replaced with foreign membrane-binding sequences, such as that of the Src oncoprotein. Moreover, the RSV M domain is capable of targeting heterologous proteins to the plasma membrane. Although the solution structure of the RSV M domain has been determined, the mechanism by which M specifically targets Gag to the plasma membrane rather than to one or more of the large number of internal membrane surfaces (e.g., the Golgi apparatus, endoplasmic reticulum, and nuclear, mitochondrial, or lysosomal membranes) is unknown. To further investigate the requirements for targeting proteins to discrete cellular locations, we have replaced the M domain of RSV with the product of the unique long region 11 (U(L)11) gene of herpes simplex virus type 1. This 96-amino-acid myristylated protein is thought to be involved in virion transport and envelopment at internal membrane sites. When the first 100 amino acids of RSV Gag (including the M domain) were replaced by the entire UL11 sequence, the chimeric protein localized at and budded into the Golgi apparatus rather than being targeted to the plasma membrane. Myristate was found to be required for this specific targeting, as were the first 49 amino acids of UL11, which contain an acidic cluster motif. In addition to shedding new light on UL11, these experiments demonstrate that RSV Gag can be directed to internal cellular membranes and suggest that regions outside of the M domain do not contain a dominant plasma membrane-targeting motif.  相似文献   

18.
The human immunodeficiency virus (HIV) type-1 viral protein U (Vpu) protein enhances the release of diverse retroviruses from human, but not monkey, cells and is thought to do so by ablating a dominant restriction to particle release. Here, we determined how Vpu expression affects the subcellular distribution of HIV-1 and murine leukemia virus (MLV) Gag proteins in human cells where Vpu is, or is not, required for efficient particle release. In HeLa cells, where Vpu enhances HIV-1 and MLV release approximately 10-fold, concentrations of HIV-1 Gag and MLV Gag fused to cyan fluorescent protein (CFP) were initially detected at the plasma membrane, but then accumulated over time in early and late endosomes. Endosomal accumulation of Gag-CFP was prevented by Vpu expression and, importantly, inhibition of plasma membrane to early endosome transport by dominant negative mutants of Rab5a, dynamin, and EPS-15. Additionally, accumulation of both HIV and MLV Gag in endosomes required a functional late-budding domain. In human HOS cells, where HIV-1 and MLV release was efficient even in the absence of Vpu, Gag proteins were localized predominantly at the plasma membrane, irrespective of Vpu expression or manipulation of endocytic transport. While these data indicated that Vpu inhibits nascent virion endocytosis, Vpu did not affect transferrin endocytosis. Moreover, inhibition of endocytosis did not restore Vpu-defective HIV-1 release in HeLa cells, but instead resulted in accumulation of mature virions that could be released from the cell surface by protease treatment. Thus, these findings suggest that a specific activity that is present in HeLa cells, but not in HOS cells, and is counteracted by Vpu, traps assembled retrovirus particles at the cell surface. This entrapment leads to subsequent endocytosis by a Rab5a- and clathrin-dependent mechanism and intracellular sequestration of virions in endosomes.  相似文献   

19.
20.
Budding of C-type retroviruses begins when the viral Gag polyprotein is directed to the plasma membrane by an N-terminal membrane-binding (M) domain. While dispersed basic amino acids within the M domain are critical for stable membrane association and consequent particle assembly, additional residues or motifs may be required for specific plasma membrane targeting and binding. We have identified an assembly-defective Rous sarcoma virus (RSV) Gag mutant that retains significant membrane affinity despite having a deletion of the fourth alpha-helix of the M domain. Examination of the mutant protein's subcellular distribution revealed that it was not localized to the plasma membrane but instead was mistargeted to intracytoplasmic membranes. Specific plasma membrane targeting was restored by the addition of myristate plus a single basic residue, by multiple basic residues, or by the heterologous hydrophobic membrane-binding domain from the cellular Fyn protein. These results suggest that the fourth alpha-helix of the RSV M domain promotes specific targeting of Gag to the plasma membrane, either through a direct interaction with plasma membrane phospholipids or a membrane-associated cellular factor or by maintaining the conformation of Gag to expose specific plasma membrane targeting sequences.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号