首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
Cultured cells of mammalian tumors induced by ribonucleic acid (RNA)-containing oncogenic viruses were examined for production of virus. The cell lines were established from tumors induced in rats and hamsters with either Rous sarcoma virus (Schmidt-Ruppin or Bryan strains) or murine sarcoma virus (Moloney strain). When culture fluids from each of the cell lines were examined for transforming activity or production of progeny virus, none of the cell lines was found to be infectious. However, electron microscopic examination of the various cell lines revealed the presence of particles in the rat cells transformed by either Rous sarcoma virus or murine sarcoma virus. These particles, morphologically similar to those associated with murine leukemias, were found both in the extracellular fluid concentrates and in whole-cell preparations. In the latter, they were seen budding from the cell membranes or lying in the intercellular spaces. No viruslike particles were seen in preparations from hamster tumors. Exposure of the rat cells to (3)H-uridine resulted in the appearance of labeled particles with densities in sucrose gradients typical of virus (1.16 g/ml.). RNA of high molecular weight was extracted from these particles, and double-labeling experiments showed that this RNA sedimented at the same rate as RNA extracted from Rous sarcoma virus. None of the hamster cell lines gave radioactive peaks in the virus density range, and no extractable high molecular weight RNA was found. These studies suggest that the murine sarcoma virus produces an infection analogous to certain "defective" strains of Rous sarcoma virus, in that particles produced by infected cells have a low efficiency of infection. The control of the host cell over the production and properties of the RNA-containing tumorigenic viruses is discussed.  相似文献   

3.
4.
The packaging of retroviral genomic RNA (gRNA) requires cis-acting elements within the RNA and trans-acting elements within the Gag polyprotein. The packaging signal ψ, at the 5′ end of the viral gRNA, binds to Gag through interactions with basic residues and Cys-His box RNA-binding motifs in the nucleocapsid. Although specific interactions between Gag and gRNA have been demonstrated previously, where and when they occur is not well understood. We discovered that the Rous sarcoma virus (RSV) Gag protein transiently localizes to the nucleus, although the roles of Gag nuclear trafficking in virus replication have not been fully elucidated. A mutant of RSV (Myr1E) with enhanced plasma membrane targeting of Gag fails to undergo nuclear trafficking and also incorporates reduced levels of gRNA into virus particles compared to those in wild-type particles. Based on these results, we hypothesized that Gag nuclear entry might facilitate gRNA packaging. To test this idea by using a gain-of-function genetic approach, a bipartite nuclear localization signal (NLS) derived from the nucleoplasmin protein was inserted into the Myr1E Gag sequence (generating mutant Myr1E.NLS) in an attempt to restore nuclear trafficking. Here, we report that the inserted NLS enhanced the nuclear localization of Myr1E.NLS Gag compared to that of Myr1E Gag. Also, the NLS sequence restored gRNA packaging to nearly wild-type levels in viruses containing Myr1E.NLS Gag, providing genetic evidence linking nuclear trafficking of the retroviral Gag protein with gRNA incorporation.The encapsidation of the RNA genome is essential for retrovirus replication. Because the viral genomic RNA (gRNA) constitutes only a small fraction of the total cellular mRNA, a specific Gag-RNA interaction is thought to be required for viral genome packaging (2). The determinants of virus-specific gRNA incorporation include the cis-acting element at the 5′end of the viral gRNA, known as the packaging signal (ψ), and the nucleocapsid (NC) domain of the Gag polyprotein (3, 14, 62). In Rous sarcoma virus (RSV), the NC domain contains basic residues that are required for the recognition of and binding to ψ, as well as two Cys-His motifs that maintain the overall conformation of NC and are essential for RNA packaging (30, 31).Packaging of gRNA into progeny virions requires that the unspliced viral mRNA be exported from the nucleus. However, cellular proofreading mechanisms ensure that unspliced or intron-containing mRNAs are retained in the nucleus until splicing occurs. Complex retroviruses like human immunodeficiency virus type 1 (HIV-1) overcome this export block of unspliced genomes by encoding the Rev protein, which interacts with a cis-acting sequence in the viral RNA (the Rev-responsive element [RRE]) to facilitate cytoplasmic accumulation of intron-containing viral mRNA (16, 35). The export of the Rev-viral RNA complex is mediated through the interaction of a leucine-rich nuclear export signal (NES) in Rev with the CRM1 nuclear export factor (17, 18, 37, 41). Simple retroviruses do not encode Rev-like regulatory proteins, so other strategies for the export of unspliced viral RNAs are needed. For Mason-Pfizer monkey virus, a cis-acting constitutive transport element induces nuclear export of the unspliced viral RNA in a process mediated by the cellular mRNA nuclear export factor TAP (5, 25, 46, 63). In RSV, an RNA element composed of either of the two direct repeats flanking the src gene mediates the cytoplasmic accumulation of unspliced viral RNA by using host export proteins TAP and Dpb5 (29, 42, 44).The findings of recent studies suggest that specific RNA export pathways direct viral gRNA to sites of virion assembly (56); for example, HIV-1 gRNA export out of the nucleus by the Rev-RRE-CRM1 complex is required for the proper subcellular localization of Gag and efficient virus particle production (26, 57). In the case of RSV, little is known about the trafficking of the viral RNA destined for virion encapsidation or the effects of the gRNA nuclear export pathway on Gag trafficking and virus particle production. However, we do know that RSV Gag enters the nucleus during infection, owing to nuclear localization signals (NLSs) in the matrix (MA) and NC domains. The nuclear localization of Gag is transient, and export is mediated by a CRM1-dependent NES in the p10 region (6, 52, 53). Thus, it is feasible that Gag may facilitate the nuclear export of the gRNA, either directly or indirectly, to promote particle assembly (53).In support of this idea, Gag mutants engineered to be more efficiently directed to the plasma membrane than wild-type Gag by the addition of the Src membrane-binding domain (in Myr1E virus) or by the insertion of extra basic residues (in SuperM virus) are not concentrated in nuclei when cells are treated with the CRM1 inhibitor leptomycin B (LMB) (8, 20, 53). Moreover, Myr1E and SuperM virus particles incorporate reduced levels of viral gRNA compared to the levels incorporated by wild-type particles. Thus, there is a correlation between the nuclear transit of Gag and gRNA packaging, although the Myr1E and SuperM viruses may be deficient in gRNA encapsidation because they are transported to the plasma membrane too rapidly (8). To test the hypothesis that the loss of Gag nuclear trafficking is responsible for the gRNA packaging defect, we used a gain-of-function genetic approach whereby a heterologous NLS was inserted into Myr1E Gag, yielding mutant virus Myr1E.NLS. Our results revealed that restoring the nuclear trafficking of Myr1E Gag also restored the incorporation of gRNA into mutant virus particles.  相似文献   

5.
In vitro translation of virion RNA of Moloney murine sarcoma virus (MSV) strain 124 yielded major products having molecular weights of 63,000 (63K), 43K, 40K, 31K, and 24K daltons. A molecularly cloned subgenomic fragment of Moloney MSV comprised of the cellular insertion (src) region was utilized in hybridization arrest translation as a means of identifying products of the MSV src gene. MSV src DNA specifically inhibited synthesis of the 43K, 40K, 31K, and 24K proteins, implying that each of these proteins was coded within the MSV src gene. The MSV src-specific nature of this family of proteins was further confirmed by partial purification of MSV src-containing RNAs from MSV non-producer cells. In vitro translation of enriched cellular RNAs yielded products with molecular weights identical to those of the 43K family of proteins synthesized from virion RNA. Nucleotide sequence analysis of the MSV transforming region has revealed a long open reading frame which includes five methionine codons (Reddy et al., Proc. Natl. Acad. Sci. U.S.A. 77:5234-5238, 1980). The molecular weights of the four largest proteins that could be synthesized within this open reading frame corresponded closely to the molecular weights of the 43K family of proteins. Partial cyanogen bromide cleavage of each of the three largest proteins resulted in an uncleaved fragment having a molecular weight equal to that of the smallest (24K) protein. These findings provide direct biochemical evidence that the 43K, 40K, 31K, and 24K proteins are related in their carboxy-terminal regions, as well as information concerning the MSV src gene coding sequences from which each protein originates:  相似文献   

6.
7.
8.
Infectious Rous Sarcoma Virus and Reticuloendotheliosis Virus DNAs   总被引:41,自引:33,他引:8       下载免费PDF全文
An efficient and quantitative assay for infectious Rous sarcoma virus and reticuloendotheliosis virus DNAs is described. The specific infectivities of viral DNA corresponded to one infectious unit per 10(5) to 10(6) viral DNA molecules. Infection with viral DNA followed one-hit kinetics. The minimal size of infectious Rous sarcoma virus DNA was approximately 6 million daltons, whereas the minimal size of infectious reticuloendotheliosis virus DNA was larger, 10 to 20 million daltons.  相似文献   

9.
Host proteins are incorporated into retroviral virions during assembly and budding. We have examined three retroviruses, human immunodeficiency virus type 1 (HIV-1), simian immunodeficiency virus (SIV), and Moloney murine leukemia virus (Mo-MuLV), for the presence of ubiquitin inside each of these virions. After a protease treatment to remove exterior viral as well as contaminating cellular proteins, the proteins remaining inside the virion were analyzed. The results presented here show that all three virions incorporate ubiquitin molecules at approximately 10% of the level of Gag found in virions. In addition to free ubiquitin, covalent ubiquitin-Gag complexes were detected, isolated, and characterized from all three viruses. Our immunoblot and protein sequencing results on treated virions showed that approximately 2% of either HIV-1 or SIV p6Gag was covalently attached to a single ubiquitin molecule inside the respective virions and that approximately 2 to 5% of the p12Gag in Mo-MuLV virions was monoubiquitinated. These results show that ubiquitination of Gag is conserved among these retroviruses and occurs in the p6Gag portion of the Gag polyprotein, a region that is likely to be involved in assembly and budding.  相似文献   

10.
11.
Labeled virions of Rous sarcoma virus (RSV) were disrupted with detergent and analyzed on equilibrium sucrose density gradients. A core fraction at a density of approximately 1.24 g/cc contained all of the (3)H-uridine label and about 30% of the (3)H-leucine label from the virions. Endogenous viral deoxyribonucleic acid (DNA) polymerase activity was only found in the same location. Additional ribonucleic acid (RNA)- and DNA-dependent DNA polymerase activities were found at the top of the gradients. RNA-dependent and DNA-dependent DNA polymerase activities were also found in RSV-converted chicken cells. Particles containing these activities were released from cells by detergent and were shown to contain viral RNA. These particles were analyzed on equilibrium sucrose density gradients and were found to have densities different from virion cores.  相似文献   

12.
The nature of murine sarcoma virus (MSV) "defectiveness" was investigated by employing an MSV-transformed mouse 3T3 cell line which releases noninfectious virus-like particles. Rescue kinetics of MSV, observed after murine leukemia virus (MuLV) superinfection of these "sarcoma-positive leukemia-negative (S + L -)" mouse 3T3 cells, consisted of a 9- to 12-hr eclipse period followed by simultaneous release of both MSV and MuLV with no evidence for release of infectious MSV prior to the production of progeny MuLV. Addition of thymidine to the growth medium of MuLV-superinfected S + L - cells at a concentration suppressing deoxyribonucleic acid synthesis inhibited the replication of MuLV and the rescue of MSV. MSV production closely paralleled MuLV replication under a variety of experimental conditions. These results suggest that replication of MuLV is required for the rescue of infectious MSV from S + L - cells and that one (or more) factor, produced late in the MuLV replicative cycle, is utilized by both viruses during virion assembly. During the course of these experiments, virus stocks were recovered which contained infectious MSV in apparent excess over MuLV. These stocks were used for generating new S + L - cell lines by simple end point dilution procedures.  相似文献   

13.
Complementary DNAs (cDNA's) specific for various regions of the Moloney murine sarcoma virus (MSV) 124 RNA genome were prepared by cross-hybridization techniques. A cDNA specific for the first 1,000 nucleotides adjacent to the RNA 3' end (cDNA 3') was prepared and shown to also be complementary to the 3'-terminal 1,000 nucleotides of a related Moloney murine leukemia virus (MLV) genome. A cDNA complementary to the "MSV-specific" portion of the MSV 124 genome was prepared. This cDNA was shown not to anneal to Moloney MLV RNA and to anneal to a portion of the viral RNA of about 1,500 to 1,800 nucleotides in length, located 1,000 nucleotides from the 3' end of MSV RNA. A cDNA common to the genome of MSV and MLV was also obtained and shown to anneal to the 5'-terminal two-thirds, as well as to the 3'-terminal 1,000 nucleotides, of the MSV RNA genome. This cDNA also annealed to the RNA from MLV and mainly to the 5'-terminal half of the MLV genome. It is concluded that the 6-kilobase Moloney MSV 124 RNA genome has a sequence arrangement that includes (i) a 3' portion of about 1,000 nucleotides, which is also present at the 3' terminus of MLV; (ii) an MSV-specific region, not shared with MLV, which extends between 1,000 and 2,500 nucleotides from the 3' terminus; and (iii) a second "common" region, again shared with MLV, which extends from 2,500 nucleotides to the 5' terminus. This second common region appears to be located in the 5' half of the 10-kilobase MLV genome as well. Experiments in which a large excess of cold MLV cDNA was annealed to (3)H-labeled polyadenylic acid-containing fragments of MSV RNA gave results consistent with this arrangement of the MSV genome.  相似文献   

14.
Non-virus-producing NIH/3T3 cells transformed by the murine sarcoma virus are agglutinated by conconavalin A to the same low level as normal NIH/3T3 cells. Infection with the murine leukemia virus greatly increases the agglutination of transformed cells but not that of normal cells. These data suggest that the morphological expression of cell transformation and the surface alterations associated with increased cell agglutination are controlled by the expressions of different sarcoma virus genes.  相似文献   

15.
The effect of suppressor tRNA's on the cell-free translation of several leukemia and sarcoma virus RNAs was examined. Yeast amber suppressor tRNA (amber tRNA) enhanced the synthesis of the Rauscher murine leukemia virus and clone 1 Moloney murine leukemia virus Pr200gag-pol polypeptides by 10- to 45-fold, but at the same time depressed the synthesis of Rauscher murine leukemia virus Pr65gag and Moloney murine leukemia virus Pr63gag. Under suppressor-minus conditions, Moloney murine leukemia virus Pr70gag was present as a closely spaced doublet. Amber tRNA stimulated the synthesis of the “upper” Moloney murine leukemia virus Pr70gag polypeptide. Yeast ochre suppressor tRNA appeared to be ineffective. Quantitative analyses of the kinetics of viral precursor polypeptide accumulation in the presence of amber tRNA showed that during linear protein synthesis, the increase in accumulated Moloney murine leukemia virus Pr200gag-pol coincided closely with the molar loss of Pr63gag. Enhancement of Pr200gag-pol and Pr70gag by amber tRNA persisted in the presence of pactamycin, a drug which blocks the initiation of protein synthesis, thus arguing for the addition of amino acids to the C terminus of Pr63gag as the mechanism behind the amber tRNA effect. Moloney murine sarcoma virus 124 30S RNA was translated into four major polypeptides, Pr63gag, P42, P38, and P23. In the presence of amber tRNA, a new polypeptide, Pr67gag, appeared, whereas Pr63gag synthesis was decreased. Quantitative estimates indicated that for every 1 mol of Pr67gag which appeared, 1 mol of Pr63gag was lost.  相似文献   

16.
A cDNA clone encoding a cellular protein that interacts with murine leukemia virus (MuLV) Gag proteins was isolated from a T-cell lymphoma library. The sequence of the clone is identical to the C terminus of a cellular protein, KIF4, a microtubule-associated motor protein that belongs to the kinesin superfamily. KIF4-MuLV Gag associations have been detected in vitro and in vivo in mammalian cells. We suggest that KIF4 could be involved in Gag polyprotein translocation from the cytoplasm to the cell membrane.  相似文献   

17.
18.
Retroviral Gag proteins direct virus particle assembly from the plasma membrane (PM). Phosphatidylinositol-(4,5)-bisphosphate [PI(4,5)P2] plays a role in PM targeting of several retroviral Gag proteins. Here we report that depletion of intracellular PI(4,5)P2 and phosphatidylinositol-(3,4,5)-triphosphate [PI(3,4,5)P3] levels impaired Rous sarcoma virus (RSV) Gag PM localization. Gag mutants deficient in nuclear trafficking were less sensitive to reduction of intracellular PI(4,5)P2 and PI(3,4,5)P3, suggesting a possible connection between Gag nuclear trafficking and phosphoinositide-dependent PM targeting.  相似文献   

19.
The efficient release of newly assembled retrovirus particles from the plasma membrane requires the recruitment of a network of cellular proteins (ESCRT machinery) normally involved in the biogenesis of multivesicular bodies and in cytokinesis. Retroviruses and other enveloped viruses recruit the ESCRT machinery through three classes of short amino acid consensus sequences termed late domains: PT/SAP, PPXY, and LYPXnL. The major late domain of Rous sarcoma virus (RSV) has been mapped to a PPPY motif in Gag that binds members of the Nedd4 family of ubiquitin ligases. RSV Gag also contains a second putative late domain motif, LYPSL, positioned 5 amino acids downstream of PPPY. LYPXnL motifs have been shown to support budding in other retroviruses by binding the ESCRT adaptor protein Alix. To investigate a possible role of the LYPSL motif in RSV budding, we constructed PPPY and LYPSL mutants in the context of an infectious virus and then analyzed the budding rates, spreading profiles, and budding morphology. The data imply that the LYPSL motif acts as a secondary late domain and that its role in budding is amplified in the absence of a fully functional PPPY motif. The LYPXL motif proved to be a stronger late domain when an aspartic acid was substituted for the native serine, recapitulating the properties of the LYPDL late domain of equine infectious anemia virus. The overexpression of human Alix in the absence of a fully functional PPPY late domain partially rescued both the viral budding rate and viral replication, supporting a model in which the RSV LYPSL motif mediates budding through an interaction with the ESCRT adaptor protein Alix.Retroviruses acquire their lipid envelopes from the plasma membrane as they bud from the cell. Although the structural protein Gag is both necessary and sufficient for the assembly of virus-like particles (VLPs), the membrane scission step of virus egress requires the recruitment of a network of cellular proteins normally involved in two analogous cellular membrane fission events, the budding of cargo-containing vesicles into multivesicular bodies (MVBs) (for review, see references 1, 5, 11, and 50) and the separation of two daughter cells during cytokinesis (3, 4). This cellular network of proteins, collectively called the ESCRT (endosomal sorting complex required for transport) machinery, includes four sequentially recruited high-molecular-weight protein complexes (ESCRT-0, ESCRT-I, ESCRT-II, and ESCRT-III) and is essential for the transport of transmembrane cargo proteins to the lysosome for degradation via an MVB intermediate.In addition to the multiprotein ESCRT complexes, other proteins are required to promote the budding of vesicles into the MVB. Ubiquitin ligases (such as Nedd4) monoubiquitinate both ESCRT components and transmembrane cargo proteins, tagging them for the MVB pathway. Adaptor proteins connect cargo proteins to ESCRT complexes or ESCRT complexes to each other. Ultimately, the final membrane fission event of vesicle budding is mediated by an AAA ATPase (Vps4).Retroviruses as well as other enveloped viruses use three amino acid consensus sequences, PPXY, PT/SAP, and LYPXnL, as docking sites for the components of the cellular ESCRT machinery. The deletion or mutation of these sequences, termed late domains, results in the failure of the virus to recruit the budding machinery to the site of assembly and thereby results in a block at the late stage of virus release in which fully assembled but immature virus particles remain attached to the plasma membrane. The PPXY late domain interacts with the WW domains of the Nedd4 family of ubiquitin ligases. Multiple ESCRT components bind to monoubiquitin tags on both cargo and ESCRT proteins. The PT/SAP late domain binds the ESCRT-I complex component, Tsg101 (tumor susceptibility gene 101). The LYPXnL late domain interacts with an adaptor protein of the ESCRT pathway, Alix (ALG-2-interacting protein X; also called AIP1) (reviewed in reference 12). Alix interacts with both Tsg101 of the ESCRT-I complex and CMHP4 of the ESCRT-III complex. A possible fourth class of late domains for the paramyxovirus SV5 was reported previously (47). The late domain function in this case has been mapped to an FPIV sequence in the M (matrix) protein. To date, this motif has yet to be shown to be important for the budding of any other virus, and an FPIV-interacting cellular protein has yet to be identified.Often, retroviruses rely on multiple late domains for efficient budding (2, 13, 16, 29, 30). For example, in addition to its PT/SAP motif in human immunodeficiency virus type 1 (HIV-1) p6, which binds Tsg101 (6, 14, 34, 52), HIV-1 also harbors an Alix-binding LYPXnL motif that functions in budding (13, 33, 34, 48, 52). Mutation of this LYPXnL motif results in only a modest reduction in HIV-1 budding (10). However, the effects of mutations in the LYPXnL motif become more obvious in the context of a minimal Gag in which the globular domain of MA and the N-terminal domain of CA are absent (48). Furthermore, the role of this motif also seems to vary among cell types. For example, the deletion of this motif decreases HIV-1 particle production 2- to 3-fold in COS-7 cells (15) but has no consequence for HeLa cells (7). The relationship of the two viral late domains to each other is unknown. It is possible that they are partially redundant, are cooperative (since they act at slightly different steps in the ESCRT pathway), or are cell type specific. It has been observed that the mutation of one late domain has a larger effect on budding than the mutation of the other, implying a hierarchy of function. For example, in HIV-1, PTAP acts as the dominant late domain and LYPXnL acts as a secondary late domain. Equine infectious anemia virus (EIAV) seems to be an exception in that it relies only on a single LYPDL motif for late domain function.Like other retroviruses, the avian alpharetrovirus Rous sarcoma virus (RSV) requires the ESCRT pathway for release, as evidenced by the observation that a dominant-negative mutant of the ATPase Vps4, which is required for the final step of the ESCRT pathway that releases the ESCRT-III complex, inhibits RSV budding in a dose-dependent manner (37). Mutational analysis mapped the RSV late domain to the PPPY motif in the small spacer peptide p2b of Gag (41, 54, 56). This PPPY motif was previously shown to interact with chicken members of the Nedd4 family of ubiquitin ligases (21, 51). RSV Gag also harbors an LYPSL late domain consensus motif 5 amino acids downstream from PPPY in the p10 domain, which could potentially promote budding via an interaction with Alix.Alix, a 97-kDa adaptor protein with diverse functions, is composed of an N-terminal Bro1 domain, a central V domain, and a C-terminal proline-rich region (10, 22, 26, 58). The proline-rich region is assumed to be unstructured and binds Tsg101 and endophilins. The Bro1 domain, which binds CHMP4, is curved and resembles a banana shape. CHMP4 binding is functionally important for promoting HIV-1 budding (10). It was suggested previously that its convex face may allow Alix to sense negative curvatures in membranes (17, 22). At least for HIV-1, the Alix Bro1 domain also interacts with the Gag NC domain (42, 43). The central V domain of Alix, which is named for its shape, has a conserved hydrophobic pocket on the second arm near the apex of the V that is responsible for the binding of the LYPXnL late domains of HIV-1 and EIAV (10, 26, 58).In the present study, we investigated the role of the LYPSL motif in RSV budding and replication. We report here that not only the PPPY motif but also the LYPSL motif act as late domains. The contribution of the LYPSL motif to the budding rate and spreading rate is secondary to that of the PPPY motif but increases in the absence of a fully functional PPPY motif. The Alix overexpression-mediated rescue of PPPY mutants supports a model in which the LYPSL late domain functions through an interaction with Alix.  相似文献   

20.
In most retroviruses, plasma membrane (PM) association of the Gag structural protein is a critical step in viral assembly, relying in part on interaction between the highly basic Gag MA domain and the negatively charged inner leaflet of the PM. Assembly is thought to begin with Gag dimerization followed by multimerization, resulting in a hexameric lattice. To directly address the role of multimerization in membrane binding, we fused the MA domains of Rous sarcoma virus (RSV) and HIV-1 to the chemically inducible dimerization domain FK506-binding protein (FKBP) or to the hexameric protein CcmK4 from cyanobacteria. The cellular localization of the resulting green fluorescent protein (GFP)-tagged chimeric proteins was examined by fluorescence imaging, and the association of the proteins with liposomes was quantified by flotation in sucrose gradients, following synthesis in a reticulocyte extract or as purified proteins. Four lipid compositions were tested, representative of liposomes commonly reported in flotation experiments. By themselves, GFP-tagged RSV and HIV-1 MA proteins were largely cytoplasmic, but both hexamerized proteins were highly concentrated at the PM. Dimerization led to partial PM localization for HIV-1 MA. These in vivo effects of multimerization were reproduced in vitro. In flotation analyses, the intact RSV and HIV-1 Gag proteins were more similar to multimerized MA than to monomeric MA. RNA is reported to compete with acidic liposomes for HIV-1 Gag binding, and thus we also examined the effects of RNase treatment or tRNA addition on flotation. tRNA competed with liposomes in the case of some but not all lipid compositions and ionic strengths. Taken together, our results further underpin the model that multimerization is critical for PM association of retroviral Gag proteins. In addition, they suggest that the modulation of membrane binding by RNA, as previously reported for HIV-1, may not hold for RSV.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号