首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
This report describes the use of the concept of inversion of hydropathy patterns to the de novo design of peptides targeted to a predetermined site on a protein. Eight- and 12-residue peptides were constructed with the EF hands or Ca(2+)-coordinating sites of calmodulin as their anticipated points of interaction. These peptides, but not unrelated peptides nor those with the same amino acid composition but a scrambled sequence, interacted with the two carboxyl-terminal Ca(2+)-binding sites of calmodulin as well as the EF hands of troponin C. The interactions resulted in a conformational change whereby the 8-mer peptide-calmodulin complex could activate phosphodiesterase in the absence of Ca(2+). In contrast, the 12-mer peptide-calmodulin complex did not activate phosphodiesterase but rather inhibited activation by Ca(2+). This inhibition could be overcome by high levels of Ca(2+). Thus, it would appear that the aforementioned concept can be used to make peptide agonists and antagonists that are targeted to predetermined sites on proteins such as calmodulin.  相似文献   

2.
The de novo design of peptides that switch their oligomerization state in response to a chemical stimulus is of interest, both as a tool for understanding the basis of molecular switching as well as development of reagents for the study of signal transduction in cells. The target of the current study is the design of a series of peptides that undergo a transition from an unstructured monomer to a four-helical bundle upon phosphorylation by the enzyme cyclic AMP-dependent protein kinase (PKA). The designed peptides are based on the 20-residue Lac repressor tetramerization domain. Beginning with this structure, we introduced a phosphorylation site near the N terminus. Phosphorylation leads to a 2-4.6 kcal/mol increase in the stability of the tetramer, depending on the design. The most successful switches were designed such that phosphorylation would increase the stability of the individual helices and also relieve an unfavorable electrostatic interaction in the tetramer.  相似文献   

3.
De novo designed synthetic mimics of antimicrobial peptides   总被引:1,自引:0,他引:1  
Antimicrobial peptides are small cationic amphiphiles that play an important role in the innate immune system. Given their broad specificity, they appear to be ideal therapeutic agents. As a result, over the last decade, there has been considerable interest in developing them as intravenously administered antibiotics. However, it has proven difficult to accomplish this goal with peptide-based structures. Although it has been possible to solve some relatively simple problems such as susceptibility to proteolysis, more severe problems have included the expense of the materials, toxicity, limited efficacy, and limited tissue distribution. In an effort to overcome these problems, we developed small synthetic oligomers designed to adopt amphiphilic conformations and exhibit potent antimicrobial activity while being nontoxic to host cells. One class of these synthetic mimics of antimicrobial peptides (SMAMPs) is being developed as intravenous antibiotics.  相似文献   

4.
5.
A method to design novel molecules that specifically recognize a structured RNA would be a promising tool for the development of drugs or probes targeting RNA. In this study, the de novo design of the alpha-helical peptides having L-alpha-amino acids with nucleobases (nucleobase amino acids, NBAs) was carried out. Binding affinities of the peptides for a hairpin RNA derived from P22 phage were dependent on the types and positions of the NBA units they have. Some NBA peptides bound to the wild-type RNA or its mutant with high affinity and high specificity compared with the native P22 N peptide. These results indicate that the NBA units on the peptides interact with the RNA bases in a specific manner. It is demonstrated that the de novo design of peptides with the NBA units is an effective way to construct novel RNA-binding molecules.  相似文献   

6.
《MABS-AUSTIN》2013,5(2):294-302
pH-dependent antibodies are engineered to release their target at a slightly acidic pH, a property making them suitable for clinical as well as biotechnological applications. Such antibodies were previously obtained by histidine scanning of pre-existing antibodies, a labor-intensive strategy resulting in antibodies that displayed residual binding to their target at pH 6.0. We report here the de novo isolation of pH-dependent antibodies selected by phage display from libraries enriched in histidines. Strongly pH-dependent clones with various affinity profiles against CXCL10 were isolated by this method. Our best candidate has nanomolar affinity for CXCL10 at pH 7.2, but no residual binding was detected at pH 6.0. We therefore propose that this new process is an efficient strategy to generate pH-dependent antibodies.  相似文献   

7.
pH-dependent antibodies are engineered to release their target at a slightly acidic pH, a property making them suitable for clinical as well as biotechnological applications. Such antibodies were previously obtained by histidine scanning of pre-existing antibodies, a labor-intensive strategy resulting in antibodies that displayed residual binding to their target at pH 6.0. We report here the de novo isolation of pH-dependent antibodies selected by phage display from libraries enriched in histidines. Strongly pH-dependent clones with various affinity profiles against CXCL10 were isolated by this method. Our best candidate has nanomolar affinity for CXCL10 at pH 7.2, but no residual binding was detected at pH 6.0. We therefore propose that this new process is an efficient strategy to generate pH-dependent antibodies.  相似文献   

8.
The Rosetta de novo enzyme design protocol has been used to design enzyme catalysts for a variety of chemical reactions, and in principle can be applied to any arbitrary chemical reaction of interest. The process has four stages: 1) choice of a catalytic mechanism and corresponding minimal model active site, 2) identification of sites in a set of scaffold proteins where this minimal active site can be realized, 3) optimization of the identities of the surrounding residues for stabilizing interactions with the transition state and primary catalytic residues, and 4) evaluation and ranking the resulting designed sequences. Stages two through four of this process can be carried out with the Rosetta package, while stage one needs to be done externally. Here, we demonstrate how to carry out the Rosetta enzyme design protocol from start to end in detail using for illustration the triosephosphate isomerase reaction.  相似文献   

9.
Here we report a novel approach in which gel-separated proteins are guanidinated in-gel prior to enzymatic cleavage. In contrast to previously described techniques, this procedure allows the extracted tryptic peptides to be N-terminal sulfonated without any further sample purification. The derivatized peptides were subsequently fragmented using a matrix-assisted laser desorption/ionization time of flight/time of flight instrument. The approach facilitates the de novo sequence analysis and allows obtaining longer stretches of amino acid sequence information. We demonstrate that the obtained information can be used to identify proteins using a sequence similarity search algorithm. The technique was compared to the standard peptide mass fingerprint approach, applied either in-gel or in solution, using a number of sodium dodecyl sulfate-polyacrylamide gel electrophoresis separated model proteins. Finally, the new protocol was applied on a proteomic study of two-dimensional PAGE separated proteins from Shewanella oneidensis. More than 50 proteins from this organism were identified using sub-picomol quantities of protein, and peptide sequences of up to 20 amino acid residues in length have been determined.  相似文献   

10.
The properties and characteristics shared by amyloid fibrils formed from disease and non-disease associated proteins that are unrelated in sequence and structure offer the prospect that model systems can be used to systematically assess the factors that predispose a native protein to form amyloid fibrils. Based on a de novo design approach, we recently reported a unique switch peptide model system, ccbeta, that forms a three-stranded coiled-coil structure at low temperatures and which can be easily converted to amyloid fibrils by increasing the temperature. To simplify the system further, we describe here the redesign of a two-stranded ccbeta coiled-coil variant and its detailed analysis by a variety of biophysical methods. Compared with the original design, the characteristics of the peptide make it even simpler to elucidate and validate fundamental principles of amyloid fibril-formation.  相似文献   

11.
De novo design of an alpha/beta barrel protein   总被引:1,自引:0,他引:1  
  相似文献   

12.
De novo design of sequences for nucleic acid structural engineering   总被引:7,自引:0,他引:7  
An interactive procedure has been developed to assign sequences for the design of nucleic acid secondary structure. The primary goal of the procedure is to facilitate macromolecular architecture studies through the design of branched nucleic acid mono- and oligo-junction constructs in a convenient fashion. The essential feature of the sequence-symmetry minimization algorithm employed is the treatment of short sequences as vocabulary elements whose repetition decreases control over the resulting secondary structure. Both manual and semi-automatic application of this approach are available. The design of linear nucleic acid molecules or molecules containing single-stranded loops or connectors is also possible through application of the procedure.  相似文献   

13.
Existing AIDS therapies are out of reach for most HIV-infected people in developing countries and, where available, they are limited by their toxicity and their cost. New anti-HIV agents are needed urgently to combat emerging viral resistance and reduce the side effects associated with currently available drugs. Toward this end, LeapFrog, a de novo drug design program was used to design novel, potent, and selective inhibitors of HIV-1 integrase. The designed compounds were synthesized and tested for in vitro inhibition of HIV-1 integrase. Out of the 25 compounds that were designed, and synthesized, four molecules (compounds 23, 26, 43, and 59) showed moderate to low inhibition of HIV-1 integrase for 3'-processing and 3'-strand transfer activities. Nonetheless, these compounds possess structural features not seen in known HIV-1 integrase inhibitors and thus can serve as excellent leads for further optimization of anti-HIV-1 integrase activity.  相似文献   

14.
De novo ligand design involves optimization of several ligand properties such as binding affinity, ligand volume, drug likeness, etc. Therefore, optimization of these properties independently and simultaneously seems appropriate. In this paper, the ligand design problem is modeled in a multiobjective using Archived MultiObjective Simulated Annealing (AMOSA) as the underlying search algorithm. The multiple objectives considered are the energy components similarity to a known inhibitor and a novel drug likeliness measure based on Lipinski's rule of five. RecA protein of Mycobacterium tuberculosis, causative agent of tuberculosis, is taken as the target for the drug design. To gauge the goodness of the results, they are compared to the outputs of LigBuilder, NEWLEAD, and Variable genetic algorithm (VGA). The same problem has also been modeled using a well-established genetic algorithm-based multiobjective optimization technique, Nondominated Sorting Genetic Algorithm-II (NSGA-II), to find the efficacy of AMOSA through comparative analysis. Results demonstrate that while some small molecules designed by the proposed approach are remarkably similar to the known inhibitors of RecA, some new ones are discovered that may be potential candidates for novel lead molecules against tuberculosis.  相似文献   

15.
Increasing interest in the production of organic compounds from non-petroleum-derived feedstocks, especially biomass, is a significant driver for the construction of new recombinant microorganisms for this purpose. As a discipline, Metabolic Engineering has provided a framework for the development of such systems. Efforts have traditionally been focused, first, on the optimization of natural producers, later progressing towards re-construction of natural pathways in heterologous hosts. To maximize the potential of microbes for biosynthetic purposes, new tools and methodologies within Metabolic Engineering are needed for the proposition and construction of de novo designed pathways. This review will focus on recent advances towards the design and assembly of biosynthetic pathways, and provide a Synthetic Biology perspective for the construction of microbial chemical factories.  相似文献   

16.
De novo sequence design of foldable proteins provides a way of investigating principles of protein architecture. We performed fully automated sequence design for a target structure having a three-helix bundle topology and synthesized the designed sequences. Our design principle is different from the conventional approach, in that instead of optimizing interactions within the target structure, we design the global shape of the protein folding funnel. This includes automated implementation of negative design by explicitly requiring higher free energy of the denatured state. The designed sequences do not have significant similarity to those of any natural proteins. The NMR and CD spectroscopic data indicated that one designed sequence has a well-defined three-dimensional structure as well as alpha-helical content consistent with the target.  相似文献   

17.
18.
We present an approach for designing self-assembled nanostructures from naturally occurring building block segments obtained from native protein structures. We focus on structural motifs from left-handed beta-helical proteins. We selected 17 motifs. Copies of each of the motifs are stacked one atop the other. The obtained structures were simulated for long periods by using Molecular Dynamics to test their ability to retain their organization over time. We observed that a structural model based on the self-assembly of a motif from E. coli galactoside acetyltransferase produced a very stable tube. We studied the interactions that help maintain the conformational stability of the systems, focusing on the role of specific amino acids at specific positions. Analysis of these systems and a mutational study of selected candidates revealed that the presence of proline and glycine residues in the loops of beta-helical structures greatly enhances the structural stability of the systems.  相似文献   

19.
A series of eight amphipathic peptides (8, 11, 15, 2 x 18, 22, 26, 29 amino acids in length) were designed to investigate the effects of amino acid composition, peptide length and secondary structure on surface activity assessed as emulsification and foaming activity. The potential for alpha-helix formation at the hydrophobic/hydrophilic interface was maximized through the use of helix-forming amino acids, a relatively large hydrophobic surface of 200 degrees of arc and ion pairs between basic and acidic amino acids on the hydrophilic surface. Emulsification activity increased rapidly between 11 and 22 residues as alpha-helicity in aqueous solution increased. Despite their small size, the peptides produced exceptionally stable emulsions, compared with proteins. Foaming activity was enhanced by the presence of aromatic amino acids and the activity of the best peptide examined was superior to that of bovine serum albumin and beta-lactoglobulin.  相似文献   

20.
The availability of the crystal structure of falcipain-3, knowledge of the peptides carrying the 7-aminocoumarin moiety as falcipain-3 ligands/substrates, and a need for new antimalarial agents stimulated us to look at the possibility of finding some novel falcipain-3 inhibitors. In this paper, we report the effect of substitution at the 7-amino position of the coumarin nucleus on the inhibition of falcipain-3, which is a well-validated antimalarial target. The de novo drug design was assisted by QSAR studies that shed light on the binding patterns of known and the newly designed inhibitors, thus taking this discovery process to the next level.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号