首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Schmitt PT  Ray G  Schmitt AP 《Journal of virology》2010,84(24):12810-12823
Enveloped virus particles are formed by budding from infected-cell membranes. For paramyxoviruses, viral matrix (M) proteins are key drivers of virus assembly and budding. However, other paramyxovirus proteins, including glycoproteins, nucleocapsid (NP or N) proteins, and C proteins, are also important for particle formation in some cases. To investigate the role of NP protein in parainfluenza virus 5 (PIV5) particle formation, NP protein truncation and substitution mutants were analyzed. Alterations near the C-terminal end of NP protein completely disrupted its virus-like particle (VLP) production function and significantly impaired M-NP protein interaction. Recombinant viruses with altered NP proteins were generated, and these viruses acquired second-site mutations. Recombinant viruses propagated in Vero cells acquired mutations that mainly affected components of the viral polymerase, while recombinant viruses propagated in MDBK cells acquired mutations that mainly affected the viral M protein. Two of the Vero-propagated viruses acquired the same mutation, V/P(S157F), found previously to be responsible for elevated viral gene expression induced by a well-characterized variant of PIV5, P/V-CPI(-). Vero-propagated viruses caused elevated viral protein synthesis and spread rapidly through infected monolayers by direct cell-cell fusion, bypassing the need to bud infectious virions. Both Vero- and MDBK-propagated viruses exhibited infectivity defects and altered polypeptide composition, consistent with poor incorporation of viral ribonucleoprotein complexes (RNPs) into budding virions. Second-site mutations affecting M protein restored interaction with altered NP proteins in some cases and improved VLP production. These results suggest that multiple avenues are available to paramyxoviruses for overcoming defects in M-NP protein interaction.  相似文献   

2.
Single cell clones of latently infected mouse neuroblastoma cells were isolated from a culture chronically infected with mouse hepatitis virus in the presence of an antiviral antibody. These cell clones did not produce infections virus or exhibit viral cytopathic effects during cultivation at 32, 37, or 39°C. Infectious virus was isolated from single cell clones via fusion with permissive cells using polyethylene glycol, but not after fusion with inactivated Sendai virus or following treatment with metabolic inhibitors. One cell clone (S-3) from which virus was rescued was negative for viral antigen by immunofluorescence. The S-3 cell clone and no demonstrable virus antigen by complement-fixation tests using cytoplasmic extracts or virus-specified proteins detectable by polyacrylamide gel electrophoresis. The rescued viruses exhibited a temperature dependent growth defect at 32°C and have been classified as cold sensitive mutants. This study suggests that a complete genome of a positive stranded RNA virus can remain latent in infected cells without the expression of detectable virus antigen.  相似文献   

3.
Specific antisera for hemagglutinin (HA) and neuraminidase antigens of influenza A(2) virus (A(2)E) were produced through the segregation of the two proteins in reciprocal viral recombinants of A(2)E and A(0)e viruses. Gamma globulin fractions of these specific antisera and of antiserum specific for the nucleoprotein (NP) antigen of A(0)e virus were conjugated with fluorescein isothiocyanate and employed to follow the synthesis of the three structural proteins in clone 1-5C-4 human aneuploid cells, with parallel measurement of serological and biological activity of the antigens by other techniques. In this system, NP antigen appeared first (at 3 hr) in the cell nucleus, whereas HA and neuraminidase appeared coincidentally, at 4 hr after infection, in the cytoplasm. The initial detectability of biological or complement-fixing activity of the proteins coincided with their demonstrability as stainable antigens. Late in infection, all three antigens were detected at the cell surface. Antibody specific for HA partially blocked the intracellular staining of neuraminidase and inhibited the enzymatic activity of both extracted and intact extracellular virus. These observations suggest the close intracytoplasmic proximity of the two envelope antigens and perhaps their initial association in a larger protein.  相似文献   

4.
Most simian virus 40 (SV40)-transformed BALB/c 3T3 clones employed for biochemical studies have been used without regard to passage level. To determine whether virus-induced properties are stable as a function of passage, we have extensively characterized one transformed clone, FNE, which was isolated after SV40 infection BALB/c 3T3 cells in factor-free medium. From the initial testing at passage 5 and for at least 50 subsequent subcultures, the cells stably maintained many transformed growth properties, including high saturation density, morphology, colony formation on contact-inhibited monolayers, tumorigenicity, and synthesis of viral-specific RNA. However, other properties varied as a function of passage. There was a slight decrease in viral genome equivalents per cell from 1.1 copy/cell at passage 5 to 0.7 copies at passage 40. Initially, the cells were negative for all type C virus; however, cells carried at low density for 13 to 20 passages (65 to 100 generations) began to release an endogenous type C virus that then persisted in the culture. Spontaneous release of type C virus did not occur in control BALB/c 3T3 cells carried under identical culture conditions for 90 passages. When the cultures were releasing type C viruses they stained uniformly and brightly positive for SV40 tumor (T) antigen by immunofluorescence, whereas T antigen staining was variable at early passage. These experiments suggest that subtle but perhaps important differences in viral gene expression can occur as a function of passage; they also demonstrate the importance of evaluating the interactions between SV40 and endogenous type C viruses.  相似文献   

5.
Type 1 human immunodeficiency viruses encoding mutated nef reading frames are 10- to 30-fold less infectious than are isogenic viruses in which the nef gene is intact. This defect in infectivity causes nef-negative viruses to grow at an attenuated rate in vitro. To investigate the mechanism of Nef-mediated enhancement of viral growth rate and infectivity, a complementation analysis of nef mutant viruses was performed. To provide Nef in trans upon viral infection, a CEM derivative cell line (designated CLN) that expresses Nef under the control of the viral long terminal repeat was constructed. When nef-negative virus was grown in CLN cells, its growth rate was restored to wild-type levels. However, the output of nef-negative virus during the first 72 h after infection of CLN cells was not restored, suggesting that provision of Nef within the newly infected cell does not enhance the productivity of a nef-negative provirus. The genetically nef-negative virions produced by the CLN cells, however, were restored to wild-type levels of infectivity as measured in a syncytium formation assay in which CD4-expressing HeLa cells were targets. These trans-complemented, genetically nef-negative virions yielded wild-type levels of viral output following a single cycle of replication in primary CD4 T cells as well as in parental CEM cells. To define the determinants for producer cell modification of virions by Nef, the role of myristoylation was investigated. Virus that encodes a myristoylation-negative nef was as impaired in infectivity as was virus encoding a deleted nef gene. Because myristoylation is required for both membrane association of Nef and optimal viral infectivity, the possibility that Nef protein is included in the virion was investigated. Wild-type virions were purified by filtration and exclusion chromatography. A Western blot (immunoblot) of the eluate fractions revealed a correlation between peak Nef signal and peak levels of p24 antigen. Although virion-associated Nef was detected in part as the 27-kDa full-length protein, the majority of immunoreactive protein was detected as a 20-kDa isoform. nef-negative virus lacked both 27- and 20-kDa immunoreactive species. Production of wild-type virions in the presence of a specific inhibitor of the human immunodeficiency virus type 1 protease resulted in virions which contained only 27-kDa full-length Nef protein. These data indicate that Nef is a virion protein which is processed by the viral protease into a 20-kDa isoform within the virion particle.  相似文献   

6.
We have studied the virus produced by a clone, termed 8A, that was isolated from a culture of murine sarcoma virus-transformed mouse cells after superinfection with Moloney murine leukemia virus (MuLV-M). Clone 8A produced high levels of type C virus particles, but only a low titer of infectious murine sarcoma virus and almost no infectious MuLV. When fresh cultures of mouse cells were infected with undiluted clone 8A culture fluids, they released no detectable pogeny virus for several weeks after infection. Fully infectious MuLV was then produced in these cultures. This virus was indistinguishable from MuLV-M by nucleic acid hybridization tests and in its insensitivity to Fv-1 restriction. It also induced thymic lymphomas in BALB/c mice. To explain these results, we propose that cone 8A is infected with a replication-defective variant of MuLV-M. Particles produced by clone 8A, containing this defective genome, can establish an infection in fresh cells but cannot produce progency virus at detectable levels. Several weeks after infection, the defect in the viral genome is corrected by back-mutation or by recombination with endogenous viral genomes, resulting in the formation of fully infectious progeny MuLV. The progeny MuLV'S that arose in two different experiments were found to be genetically different from each other. This is consistent with the hypothesis that, in each experiment, the progeny virus is formed clone 8A cells and assayed for infectivity by the calcium phosphate transfection technique. No detectable MuLV was produced by cells treated with this DNA. This finding, along with positive results obtained in control experiments, indicates that clone 8A cells do not contain a normal MuLV provirus.  相似文献   

7.
Molecular determinants of neuropathogenesis have been shown to be present in the hemagglutinin (H) protein of measles virus (MV). An H gene insertion vector has been generated from the Edmonston B vaccine full-length infectious clone of MV. Using this vector, it is possible to insert complete H open reading frames into the parental (Edtag) background. The H gene from a rodent brain-adapted MV strain (CAM/RB) was inserted into this vector, and a recombinant virus (EdtagCAMH) was rescued by using a modified vaccinia virus which expresses T7 RNA polymerase (MVA-T7). The recombinant virus grew at an equivalent rate and to similar titers as the CAM/RB and Edtag parental viruses. Neurovirulence was assayed in a mouse model for MV encephalitis. Viruses were injected intracerebrally into the right cortex of C57/BL/6 suckling mice. After infection mice inoculated with the CAM/RB strain developed hind limb paralysis and ataxia. Clinical symptoms were never observed with an equivalent dose of Edtag virus or in sham infections. Immunohistochemistry (IHC) was used to detect viral antigen in formalin-fixed brain sections. Measles antigen was observed in neurons and neuronal processes of the hippocampus, frontal, temporal, and olfactory cortices and neostriatum on both sides of symmetrical structures. Viral antigen was not detected in mice infected with Edtag virus. Mice infected with the recombinant virus, EdtagCAMH, became clinically ill, and virus was detected by IHC in regions of the brain similar to those in which it was detected in animals infected with CAM/RB. The EdtagCAMH infection had, however, progressed much less than the CAM/RB virus at 4 days postinfection. It therefore appears that additional determinants are encoded in other regions of the MV genome which are required for full neurovirulence equivalent to CAM/RB. Nevertheless, replacement of the H gene alone is sufficient to cause neuropathology.  相似文献   

8.
When 1–5C-4 cells were infected with von Magnus virus derived from influenza A/RI/5+ virus by four successive undiluted passages in chick embryos, virus-specific proteins were synthesized but production of infectious virus was inhibited. In these cells the synthesis of viral RNA was suppressed and the nucleoprotein (NP) antigen was found predominantly in the nucleus in contrast to standard virus-infected cells in which the antigen was distributed throughout the whole cell. The intracellular location and migration of NP were determined by isotope labeling and sucrose gradient centrifugation of subcellular fractions. In standard virus-infected cells NP polypeptide was present predominantly in the cytoplasm in the form of viral ribonucleoprotein (RNP) and intranuclear RNP was detected in reduced amounts. In contrast, in von Magnus virus-infected cells NP polypeptide was present predominantly in the nucleus in a nonassembled, soluble form and the amount of cytoplasmic RNP was considerably reduced. After short-pulse labeling NP was detected exclusively in the cytoplasm in a soluble form and after a chase a large proportion of such soluble NP was seen in the nucleus. It is suggested that a large proportion of the NP synthesized in von Magnus virus-infected cells is not assembled into cytoplasmic RNP because of the lack of available RNA and the NP migrated into the nucleus and remained there.  相似文献   

9.
Membrane lipid raft domains are thought to be sites of assembly for many enveloped viruses. The roles of both classical lipid rafts and lipid rafts associated with the membrane cytoskeleton in the assembly of Newcastle disease virus (NDV) were investigated. The lipid raft-associated proteins caveolin-1, flotillin-2, and actin were incorporated into virions, while the non-lipid raft-associated transferrin receptor was excluded. Kinetic analyses of the distribution of viral proteins in lipid rafts, as defined by detergent-resistant membranes (DRMs), in non-lipid raft membranes, and in virions showed an accumulation of HN, F, and NP viral proteins in lipid rafts early after synthesis. Subsequently, these proteins exited the DRMs and were recovered quantitatively in purified virions, while levels of these proteins in detergent-soluble cell fractions remained relatively constant. Cholesterol depletion of infected cells drastically altered the association of viral proteins with DRMs and resulted in an enhanced release of virus particles with reduced infectivity. Decreased infectivity was not due to effects on subsequent virus entry, since the extraction of cholesterol from intact virus did not significantly reduce infectivity. Particles released from cholesterol-depleted cells had very heterogeneous densities and altered ratios of NP and glycoproteins, demonstrating structural abnormalities which potentially contributed to their lowered infectivity. Taken together, these results indicate that lipid rafts, including cytoskeleton-associated lipid rafts, are sites of NDV assembly and that these domains are important for ordered assembly and release of infectious Newcastle disease virus particles.  相似文献   

10.
The replicative, cytopathic, and antigenic properties of simian immunodeficiency virus (SIV) variants influence its replication efficiency in vivo. To further define the viral properties and determinants that may be important for high-level replication in vivo and progression to AIDS, we compared a minimally pathogenic SIVmne molecular clone with two highly pathogenic variants cloned from late stages of infection. Both variants had evolved greater infectivity than the parental clone due to mutations in nef. Interestingly, a pol determinant in one of the highly pathogenic variants also contributed to its increased infectivity. Furthermore, because replication in vivo may also be influenced by the ability of a virus to evade the cellular immune response of the host, we examined whether the variants were more capable of downregulating surface expression of class I major histocompatibility complex (MHC). Decreased MHC class I expression was not observed in cells infected with any of the viruses. Furthermore, the Nef proteins of the highly pathogenic variants only slightly reduced surface MHC class I expression in transfected cells, although they efficiently downregulated CD4. Together, these data demonstrate that mutations which can enhance viral infectivity, as well as CD4 downregulation, may be important for efficient replication of SIV in the host. However, Nef-mediated reduction of MHC class I expression does not appear to be critical for the increased in vivo replicative ability of highly pathogenic late variants.  相似文献   

11.
The effect of host cell factors on infectivity of human immunodeficiency virus type 1 (HIV-1) was studied by infecting a monoblastoid cell line (U937) or a T-cell line (MOLT-4) with a highly infective single clone of HIV-1 and comparing the infectivity of the produced viruses to different cell lines. Chronically infected U937 cells consistently produced viruses with minimal infectivity. This phenotypic change was host-dependent as the back-passage of the U937-produced low infective viruses into MOLT-4 cells resulted in regaining their original high infectivity. Southern and Northern blot analyses of the HIV-1 grown in U937 cells did not reveal any genomic difference between it and the virus grown it MOLT-4 cells. The radioimmunoprecipitation analysis of viral proteins showed that the HIV-1-infected U937 cells had a different pattern of envelope glycoproteins and core proteins, which well correlated with the low infectivity of the produced viruses. This experimental system using MOLT-4 and U937 cell lines would be useful to further explore host cell factor(s) which play an important role in the regulation of HIV-1 infectivity.  相似文献   

12.
At 739 amino acids, the nucleoprotein (NP) of Ebola virus is the largest nucleoprotein of the nonsegmented negative-stranded RNA viruses, and like the NPs of other viruses, it plays a central role in virus replication. Huang et al. (Y. Huang, L. Xu, Y. Sun, and G. J. Nabel, Mol. Cell 10:307-316, 2002) previously demonstrated that NP, together with the minor matrix protein VP24 and polymerase cofactor VP35, is necessary and sufficient for the formation of nucleocapsid-like structures that are morphologically indistinguishable from those seen in Ebola virus-infected cells. They further showed that NP is O glycosylated and sialylated and that these modifications are important for interaction between NP and VP35. However, little is known about the structure-function relationship of Ebola virus NP. Here, we examined the glycosylation of Ebola virus NP and further investigated its properties by generating deletion mutants to define the region(s) involved in NP-NP interaction (self-assembly), in the formation of nucleocapsid-like structures, and in the replication of the viral genome. We were unable to identify the types of glycosylation and sialylation, although we did confirm that Ebola virus NP was glycosylated. We also determined that the region from amino acids 1 to 450 is important for NP-NP interaction (self-assembly). We further demonstrated that these amino-terminal 450 residues and the following 150 residues are required for the formation of nucleocapsid-like structures and for viral genome replication. These data advance our understanding of the functional region(s) of Ebola virus NP, which in turn should improve our knowledge of the Ebola virus life cycle and its extreme pathogenicity.  相似文献   

13.
In the past, simian virus 40 (SV40) has been used as a cloning vehicle to clone foreign genes by substituting portions of the viral genome vital for viral replication. Propagation of these defective viruses required a helper virus and the recombinant viruses obtained could be grown only as a mixture. In this study, we describe a novel nondefective SV40 vector to clone small RNA polymerase III genes. Two small RNA polymerase III genes, an amber suppressor human serine tRNA gene and the adenovirus (Ad) VAI RNA gene, were cloned in the intron region of the large-T antigen gene of SV40 after deleting DNA sequences coding for the small-t polypeptide. The recombinant viruses grew to wild type levels and showed no growth defects. When CV-1p cells were infected with these viruses, the cloned RNA polymerase III genes were expressed at high levels at late times. Interestingly, large amounts VAI RNA in CV-1p cells infected with SV40-VA recombinant virus, did not enhance translation of viral mRNAs significantly but did lead to a 3 to 4 fold increase in the steady state levels of large-T mRNA suggesting a novel function for VAI RNA in SV40 infected monkey cells. Furthermore, VAI mutants which fail to function in Ad infected human cells also failed to enhance the levels of large-T mRNAs in monkey cells infected with SV40. The simple SV40 vector described here may be useful to study the structure and function of small RNA polymerase III genes in the context of a eucaryotic chromosome. In addition, the nondefective recombinant SV40 which expresses the suppressor tRNA gene at high levels may provide a useful helper system to propagate animal viruses with amber mutations in essential genes.  相似文献   

14.
Dengue virus envelope protein (E) contains two N-linked glycosylation sites, at Asn-67 and Asn-153. The glycosylation site at position 153 is conserved in most flaviviruses, while the site at position 67 is thought to be unique for dengue viruses. N-linked oligosaccharide side chains on flavivirus E proteins have been associated with viral morphogenesis, infectivity, and tropism. Here, we examined the relevance of each N-linked glycan on dengue virus E protein by removing each site in the context of infectious viral particles. Dengue viruses lacking Asn-67 were able to infect mammalian cells and translate and replicate the viral genome, but production of new infectious particles was abolished. In addition, dengue viruses lacking Asn-153 in the E showed reduced infectivity. In contrast, ablation of one or both glycosylation sites yielded viruses that replicate and propagate in mosquito cells. Furthermore, we found a differential requirement of N-linked glycans for E secretion in mammalian and mosquito cells. While secretion of E lacking Asn-67 was efficient in mosquito cells, secretion of the same protein expressed in mammalian cells was dramatically impaired. Finally, we found that viruses lacking the carbohydrate at position 67 showed reduced infection of immature dendritic cells, suggesting interaction between this glycan and the lectin DC-SIGN. Overall, our data defined different roles for the two glycans present at the E protein during dengue virus infection, highlighting the involvement of distinct host functions from mammalian and mosquito cells during dengue virus propagation.  相似文献   

15.
The replication competence of human immunodeficiency virus type 1 genomes containing mutations in the nef open reading frame was evaluated in continuous cell lines. Mutants that contained a deletion in the nef open reading frame, premature termination codons, or missense mutations in the N-terminal myristoylation signal were constructed. The replication of these mutants was tested in three ways. First, plasmid genomes were used to transfect T-lymphoblastoid cells. Second, low-passage posttransfection supernatants were used to infect cells with a relatively low virus input. Third, high-titer virus stocks were used to infect cells with a relatively high virus input. These experiments demonstrated a 100- to 10,000-fold decrement in p24 production by the nef mutants compared with that by the wild-type virus. The greatest difference was obtained after infection with the lowest virus input. The myristoylation signal was critical for this positive effect of nef. To investigate the mechanism of the positive influence of nef, nef-positive and nef-minus viruses were compared during a single cycle of replication. These single-cycle experiments were initiated both by infection with high-titer virus stocks and by transfection with viral DNA. Single-cycle infection yielded a three- to fivefold decrement in p24 production by nef-minus virus. Single-cycle transfection yielded equal amounts of p24 production. These results implied that nef does not affect replication after the provirus is established. In support of these results, viral production from cells chronically infected with nef-positive or nef-minus viruses was similar over time. To determine whether the effect of nef was due to infectivity, end point titrations of nef-positive and nef-minus viruses were performed. nef-positive virus had a greater infectivity per picogram of HIV p24 antigen than nef-minus virus. These data indicated that the positive influence of nef on viral growth rate is due to an infectivity advantage of virus produced with an intact nef gene.  相似文献   

16.
The heterogeneity of Epstein-Barr virus (EBV) obtained from P3HR-1 cells has permitted derivation of a distinct subclone of P3HR-1 (L. Heston, M. Rabson, N. Brown, and G. Miller, Nature (London) 295:160-163, 1982). We have analyzed the biologic properties and genomic structure of this subclonal virus (clone 13) compared with those of parental P3HR-1 and B95-8 viruses. Synthesis of EBV compared with those of parental P3HR-1 and B95-8 viruses. Synthesis of EBV proteins in Raji cells superinfected with virus derived from P3HR-1, clone 13, and B95-8 was analyzed both by fluorography of radiolabeled proteins and by immunoblotting. Highly concentrated preparations of clone 13 and B95-8 virus induced most of the spectrum of EBV proteins in Raji cells with the exception of the 145,000-, 140,000-, and 110,000-molecular-weight proteins, which were either undetectable or reduced. Moreover, both clone 13 and B95-8 viruses also induced the same patterns of early antigen diffuse components as the parental P3HR-1 virus did. However, only P3HR-1 virus could induce EBV DNA synthesis in superinfected Raji cells, as determined both by buoyant density centrifugation and by in situ cytohybridization with biotinylated recombinant EBV DNA probes. Defective heterogeneous molecules present in P3HR-1 virus have been implicated in early antigen induction after superinfection of Raji cells. Therefore, Southern blots of clone 13, P3HR-1, and B95-8 viruses were hybridized to recombinant EBV fragments representing the sequences contained within the defective molecules in P3HR-1. The parental P3HR-1 contained the previously described defective molecules. No evidence for defective molecules was found in clone 13 or B95-8 viruses. These data indicate that concentrated preparations of both clone 13 and B95-8 viruses can induce abortive infection in Raji cells, but while the defective molecules are not needed for induction of early antigen diffuse components, they may be required for the induction of viral DNA synthesis.  相似文献   

17.
The CD4 protein is required for the entry of human immunodeficiency virus (HIV) into target cells. Upon expression of the viral genome, three HIV-1 gene products participate in the removal of the primary viral receptor from the cell surface. To investigate the role of surface-CD4 in HIV replication, we have created a set of Jurkat cell lines which constitutively express surface levels of CD4 comparable to those found in peripheral blood lymphocytes and monocytes. Expression of low levels of CD4 on the surface of producer cells exerted an inhibitory effect on the infectivity of HIV-1 particles, whereas no differences in the amount of cell-free p24 antigen were observed. Higher levels of cell surface CD4 exerted a stronger inhibitory effect on infectivity, and also affected the release of free virus in experiments where the viral genomes were delivered by electrotransfection. The CD4-mediated inhibition of HIV-1 infectivity was not observed in experiments where the vesicular stomatitis virus G protein was used to pseudotype viruses, suggesting that an interaction between CD4 and gp120 is required for interference. In contrast, inhibition of particle release by high levels of cell-surface CD4 was not overcome by pseudotyping HIV-1 with foreign envelope proteins. Protein analysis of viral particles released from HIV-infected Jurkat-T cells revealed a CD4-dependent reduction in the incorporation of gp120. These results demonstrate that physiological levels of cell-surface CD4 interfere with HIV-1 replication in T cells by a mechanism that inhibits envelope incorporation into viral membranes, and therefore provide an explanation for the need to down-modulate the viral receptor in infected cells. Our findings have important implications for the spread of HIV in vivo and suggest that the CD4 down-modulation function may be an alternative target for therapeutic intervention.  相似文献   

18.
Infectious recombinant viruses were constructed from three molecularly cloned human immunodeficiency virus (HIV) strains varying in cell tropism. All recombinants showed a high infectivity titer on phytohemagglutinin-stimulated normal T lymphocytes. However, a 120-bp region of the envelope gene including the area of the V3 hypervariable loop was found to influence infectivity titer on both clone 1022 CD4-positive HeLa cells and CD4-positive CEM leukemia cells. Infectivity for macrophages was more complex. All viruses replicated in macrophages to a low level, but viral sequences both inside and outside the V3 loop region influenced the efficiency of replication. Two experiments showed that the mechanism of restriction of infection of 1022 cells by HIV strain JR-CSF was related to lack of virus entry. First, productive virus infection occurred after transfection of 1022 cells with viral plasmid DNA. Second, the nonpermissive HIV strain JR-CSF could infect 1022 cells when pseudotyped with the envelope of other retroviruses, including human T-cell leukemia virus type I (HTLV-I), HTLV-II, and amphotropic murine leukemia virus. These results demonstrate the possibility that unexpected cell types might be infected with HIV in human patients coinfected with HIV and HTLV-I or HTLV-II.  相似文献   

19.
The cell culture lines HTG2 and HTG3 were established from a transplantable hamster tumor induced by a murine sarcoma virus (strain Gz-MSV) after 17 and 60 in vivo passages, respectively. The viruses released by these two cell lines markedly differ in morphology, antigenic composition, infectivity, transforming ability, and enzymatic activity. HTG2 virions contained the sarcoma genome but were noninfectious for mouse and hamster cells (S+H-virus). HTG3 virions transformed hamster but not mouse cells. Whereas HTG2 cells and its virus contained murine type C virus gs-1 antigen, all HTG3 clonal lines expressed both murine and hamster type C virus gs-1 antigens. The RNA-dependent DNA polymerase activity of HTG2 virus was very low, whereas that of HTG3 virus was relatively high. HTG2 virions contained electron-lucent centers only. HTG3 virus consisted of the expected mixture of virions with electron-dense and electron-lucent centers. Many broken or incomplete virions were present in both viruses. HTG2 virus is a noninfectious "defective" sarcoma virus without detectable helper virus. Data obtained in these experiments suggest that HTG3 virus is a hamster type C virus pseudotype of Gz-MSV (Gz-MSV [HaLV]). The genome of Gz-MSV is capable of antigenic expression in heterologous cells and in the presence of heterologous viruses. Attempts to chemically activate hamster type C virus (HaLV) from HTG2 cells were unsuccessful. The HTG1 cell culture line, established from another Gz-MSV-induced hamster tumor, initially released a virus indistinguishable from the HTG2 virus. After in vitro passage, spontaneous activation of HaLV occurred in HTG1 cells, and the resultant Gz-MSV (HaLV) had properties similar to those of the HTG3 virus.  相似文献   

20.
Segmentation of the influenza A virus (IAV) genome enables rapid gene reassortment at the cost of complicating the task of assembling the full viral genome. By simultaneously probing for the expression of multiple viral proteins in MDCK cells infected at a low multiplicity with IAV, we observe that the majority of infected cells lack detectable expression of one or more essential viral proteins. Consistent with this observation, up to 90% of IAV-infected cells fail to release infectious progeny, indicating that many IAV virions scored as noninfectious by traditional infectivity assays are capable of single-round infection. This fraction was not significantly affected by target or producer cell type but varied widely between different IAV strains. These data indicate that IAV exists primarily as a swarm of complementation-dependent semi-infectious virions, and thus traditional, propagation-dependent assays of infectivity may drastically misrepresent the true infectious potential of a virus population.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号