首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 687 毫秒
1.
To examine the molecular mechanisms underlying breast cancer metastasis in liver and search for potential markers of metastatic progression in soft-tissue, we analyzed metastatic variants developed from the highly metastatic MDA-MB 435 cell line through in vivo stepwise selection in the athymic mice. Comparative proteomic analysis using two-dimensional electrophoresis (2DE-DIGE) revealed that 74 protein spots were reproducibly more than doubled in liver metastatic cells compared to parental counterpart. From 22 proteins identified by MALDI-TOF, belonging to intermediate filaments, intracellular transport and ATP synthesis, we generated a protein-protein interaction network containing 496 nodes, 12 of which interacted. GRP 75 was connected with four other proteins: prohibitin, HSP 27, elongin B and macropain delta chain. After functional classification, we found that pathways including hepatocyte growth factor receptor (p = 0.014), platelet-derived growth factor (p = 0.018), vascular endothelial growth factor (p = 0.021) and epidermal growth factor (p = 0.050) were predominant in liver metastatic cells, but not in lung metastatic cells. In conclusion, we suggest that GRP 75 is involved in cell proliferation, tumorigenesis and stress response in metastatic cells by recruiting signals in which the transmembrane receptor protein tyrosine kinase signaling pathway (p-value FDR = 1.71 x 10(-2)) and protein amino acid phosphorylation (p-value FDR = 3.28 x 10(-2)) might be the most significant biological process differentially increased in liver metastasis.  相似文献   

2.
目的研究泛素羧基末端水解酶L1(UCH-L1)与磷酸化p38(p-p38)在乳腺癌组织、细胞系中的表达情况、两种蛋白的表达与临床病理特征的关系以及UCH-L1与乳腺癌侵袭转移的关系。方法用免疫组织化学方法检测乳腺癌组织中UCH-L1与p-p38蛋白的表达情况,用Western Blot方法检测乳腺癌组织以及细胞系中UCH-L1与p-p38蛋白的表达情况。应用UCH-L1特异性抑制剂作用于乳腺癌高侵袭高转移细胞系MDA-MB-435s后,用Western Blot观察UCH-L1与p-p38蛋白表达改变的情况,用Transwell实验检测MDA-MB-435s细胞侵袭潜能的改变。结果 UCH-L1和p-p38蛋白在乳腺浸润性导管癌中的表达高于其在癌旁正常乳腺组织中的表达(P=0.012,P=0.001),二者呈正相关(r=0.397,P=0.000),并与乳腺癌的TNM分期(P=0.017,P=0.010)、淋巴结转移情况(P=0.033,P=0.021)相关。乳腺上皮细胞系MCF-10A、乳腺癌低侵袭低转移细胞系MCF-7和乳腺癌高侵袭高转移细胞系MDA-MB-435s中两种蛋白表达水平呈递增趋势(P均<0.05)。UCH-L1特异性抑制剂可以浓度依赖性地下调MDA-MB-435s细胞系中p-p38蛋白的表达水平(P均<0.05),并能抑制乳腺癌细胞的侵袭转移潜能。结论 UCH-L1、p-p38过表达与乳腺癌的TMN分期、淋巴结转移有关。UCH-L1可能通过上调p-p38介导乳腺癌转移。  相似文献   

3.
Four different human breast cancer cell lines were examined to search for genes associated with tumor growth and metastasis. Each of these cell lines, MDA-MB-453, MCF-7, MDA-MB-231 and MDA-MB-435, displays different phenotypic characteristics ranging from poorly to highly tumorigenic and metastatic. The differences in gene expression profiles of these cell lines generated by differential display technique should allow one to identify candidates as putative oncogenes or tumor/metastasis suppressor genes. A novel cDNA expressed in the highly tumorigenic and metastatic cell line, MDA-MB-435, was identified and isolated by this approach. The function for this gene, designated ALP56 (aspartic-like protease 56 kDa), in tumor progression is suggested by the homology of the encoded protein to aspartic proteases, such as cathepsin D. The amino acid residues in two catalytic domains of this family are highly conserved in those domains of ALP56. Northern hybridization indicated that the expression of ALP56 is associated with growth and metastasis of MDA-MB-435 tumors in immunodeficient mice. In situ hybridization of biopsies from breast cancer and colon cancer patients indicated that ALP56 is upregulated in human primary tumors and liver metastasis. These results suggest that this novel gene correlates with human tumor progression.  相似文献   

4.
5.
Pyruvate carboxylase (PC) is an anaplerotic enzyme that catalyzes the carboxylation of pyruvate to oxaloacetate, which is crucial for replenishing tricarboxylic acid cycle intermediates when they are used for biosynthetic purposes. We examined the expression of PC by immunohistochemistry of paraffin-embedded breast tissue sections of 57 breast cancer patients with different stages of cancer progression. PC was expressed in the cancerous areas of breast tissue at higher levels than in the non-cancerous areas. We also found statistical association between the levels of PC expression and tumor size and tumor stage (P < 0.05). The involvement of PC with these two parameters was further studied in four breast cancer cell lines with different metastatic potentials; i.e., MCF-7, SKBR3 (low metastasis), MDA-MB-435 (moderate metastasis) and MDA-MB-231 (high metastasis). The abundance of both PC mRNA and protein in MDA-MB-231 and MDA-MB-435 cells was 2-3-fold higher than that in MCF-7 and SKBR3 cells. siRNA-mediated knockdown of PC expression in MDA-MB-231 and MDA-MB-435 cells resulted in a 50% reduction of cell proliferation, migration and in vitro invasion ability, under both glutamine-dependent and glutamine-depleted conditions. Overexpression of PC in MCF-7 cells resulted in a 2-fold increase in their proliferation rate, migration and invasion abilities. Taken together the above results suggest that anaplerosis via PC is important for breast cancer cells to support their growth and motility.  相似文献   

6.
Despite advances in basic and clinical research, metastasis remains the leading cause of death in breast cancer patients. Genetic abnormalities in mitochondria, including mutations affecting complex I and oxidative phosphorylation, are found in breast cancers and might facilitate metastasis. Genes encoding complex I components have significant breast cancer prognostic value. In this study, we used quantitative proteomic analyses to compare a highly metastatic cancer cell line and a parental breast cancer cell line; and observed that NDUFB9, an accessory subunit of the mitochondrial membrane respiratory chain NADH dehydrogenase (complex I), was down-regulated in highly metastatic breast cancer cells. Furthermore, we demonstrated that loss of NDUFB9 promotes MDA-MB-231 cells proliferation, migration, and invasion because of elevated levels of mtROS, disturbance of the NAD+/NADH balance, and depletion of mtDNA. We also showed that, the Akt/mTOR/p70S6K signaling pathway and EMT might be involved in this mechanism. Thus, our findings contribute novel data to support the hypothesis that misregulation of mitochondrial complex I NADH dehydrogenase activity can profoundly enhance the aggressiveness of human breast cancer cells, suggesting that complex I deficiency is a potential and important biomarker for further basic research or clinical application.  相似文献   

7.
The superinvasive phenotype exhibited by paclitaxel-selected variants of an in vitro invasive clonal population of the human cancer cell line, MDA-MB-435S were examined using DIGE (Fluorescence 2-D Difference Gel Electrophoresis) and mass spectrometry. Isolation of membrane proteins from the MDA-MB-435S-F/Taxol-10p4p and parental populations was performed by temperature-dependent phase partitioning using the detergent Triton X-114. Subsequent DIGE-generated data analysed using Decyder software showed many differentially-expressed proteins in the membrane fraction. 16 proteins showing statistically significant upregulation in the superinvasive cells were identified by MALDI-ToF. Proteins upregulated in the superinvasive population include Galectin-3, Cofilin, ATP synthase beta subunit, voltage-dependent anion channel 1, voltage dependent anion channel 2, ER-60 protein, MHC class II antigen DR52, Beta actin, TOMM40 protein, Enolase 1, Prohibitin, Guanine nucleotide-binding protein, Annexin II, Heat shock 70 kDa protein, Stomatin-like protein 2 and Chaperonin. Many of these proteins are associated with inhibition of apoptosis, the progression of cancer, tumourigenicity, metastasis, actin remodelling at the leading edge of cells, polarized cell growth, endocytosis, phagocytosis, cellular activation, cytokinesis, and pathogen intracellular motility. These results suggest a correlation between the increased abundance of these proteins with the superinvasive phenotype of the paclitaxel-selected MDA-MB-435S-F/Taxol-10p4p population.  相似文献   

8.
Interactions between the hormone melatonin at pharmacological concentrations (10(-3) M) and 2 Hz, 0.3 mT pulsed electromagnetic fields (PEMF) on the proliferation and invasion of human breast cancer cells were studied in vitro. Three types of human breast cancer cells were used in this study: MDA-MB-435, MDA-MB-231, and MCF-7. Results showed that cellular growth of MDA-MB-231 cells, which were reported to be lowly metastatic, and MCF-7 cells, which were reported to be nonmetastatic, were both significantly reduced by melatonin regardless of the presence of the field. Results also showed that MDA-MB-435 and MDA-MB-231 cells were invasive, with MDA-MB-231 cells being more invasive than the MDA-MB-435 cells for both unexposed and experimental-PEMF groups. In addition, invasion studies showed that MCF-7 cells were not invasive and that melatonin did not have any effects on the invasion of these cells, with or without the PEMF. It is also suggested that since metastasis requires growth and invasion into tissue, anti-invasion agents can be used in conjunction with melatonin to prevent formation of secondary metastases. The overall studies suggest that PEMF at 2 Hz, 0.3 mT does not influence cancer metastasis; while having clinical merit in the healing of soft tissue injury, this field has shown no influence on cancer cells as 60 Hz power line fields have.  相似文献   

9.
The importance of Thomsen-Friedenreich antigen (T antigen)-galectin-3 interactions in adhesion of human breast carcinoma cells to the endothelium under conditions of flow was studied. Highly metastatic cells (MDA-MB-435) expressing high levels of both galectin-3 and T antigen demonstrated significantly increased adhesion to monolayers of endothelial cells compared with their non-metastatic counterpart (MDA-MB-468) in vitro. Within minutes of adhesion, the highly metastatic cells acquire the ability of enhanced homotypic adhesion, leading to the formation of multicellular aggregates at sites of attachment to endothelial cells in vitro. Treatment of cells with lactulosyl-l-leucine, a synthetic T antigen antagonist that targets galectin-3 by mimicking T antigen, caused a 60-80% inhibition of both homo- and heterotypic adhesion of MDA-MB-435 cells. Confocal microscopy and fluorescence-activated cell sorter analysis revealed redistribution of endothelial galectin-3 to the site of heterotypic intercellular contacts, whereas galectin-3 in MDA-MB-435 cells accumulated at sites of homotypic interaction. MDA-MB-435 cells also exhibited increased adhesion and intravascular retention within the microvessels of transplanted lung allografts in nude mice. T antigen and galectin-3-mediated interactions of metastatic cancer cells with endothelium under conditions of flow are characterized by a unique adhesion mechanism that qualitatively distinguishes their homo- and heterotypic adhesive behavior from other cell types such as leukocytes.  相似文献   

10.
11.
Toll-like receptor (TLR)4-mediated signaling has been implicated in tumor cell invasion, survival, and metastasis in a variety of cancers. This study investigated the expression and biological role of TLR4 in human breast cancer metastasis. MCF-7 and MDA-MB-231 are human breast cancer cell lines with low and high metastatic potential, respectively. Using lipopolysaccharide (LPS) to stimulate MCF-7 and MDA-MB-231 cells, expression of TLR4 mRNA and protein increased compared with that in control cells. TLR4 activation notably up-regulated expression of matrix metalloproteinase (MMP)-2, MMP-9 and vascular endothelial growth factor(VEGF) mRNA and their secretion in the supernatants of both cell lines. LPS enhanced invasion of MDA-MB-231 cells by transwell assay and MCF-7 cells by wound healing assay. LPS triggered increased expression of TLR4 downstream signaling pathway protein myeloid differentiation factor 88(MyD88) and resulted in interleukin (IL)-6 and IL-10 higher production by human breast cancer cells. Stimulation of TLR4 with LPS promoted tumorigenesis and formed metastatic lesions in liver of nude mice. Moreover, expression of TLR4 and MyD88 as well as invasiveness and migration of the cells could be blocked by TLR4 antagonist. Combined with clinicopathological parameters, TLR4 was overexpressed in human breast cancer tissue and correlated with lymph node metastasis. These findings indicated that TLR4 may participate in the progression and metastasis of human breast cancer and provide a new therapeutic target.  相似文献   

12.
Primary lung tumors, breast tumors, and melanoma metastasize mainly in the brain where therapy is limited to surgery and radiation. To investigate the molecular basis of brain metastases, we isolated brain-trophic metastatic MDA-MB-435-LvBr2 (LvBr2) cells via left ventricle (LV) injection of MDA-MB-435 cells into immunodeficiency (NOD/SCID) mice. Whereas parent MDA-MB-435 cells displayed an elongated morphology, LvBr2 cells were round and displayed an aggregated distribution. LvBr2 cells expressed lower β-catenin levels and higher heterogeneous nuclear ribonucleoprotein C1/C2 (hnRNPC) levels than parental cells. Since microRNAs are known to play an important role in cancer progression including metastasis, we screened microRNAs expressed specifically in brain metastases. MicroRNA-146a was almost undetectable in LvBr2 cells and highly expressed in the parental cells. Overexpression of miR-146a increased β-catenin expression and suppressed the migratory and invasive activity of LvBr2 cells. The miR-146a-elicited decrease in hnRNPC in turn lowered the expression of MMP-1, uPA, and uPAR and inhibited the migratory and invasive activity of LvBr2 cells. Taken together, our findings indicate that miR-146a is virtually absent from brain metastases and can suppress their metastatic potential including their migratory and invasive activities associated with upregulation of β-catenin and downregulation of hnRNPC.  相似文献   

13.
The Rho GTPase Rac regulates actin cytoskeleton reorganization to form cell surface extensions (lamellipodia) required for cell migration/invasion during cancer metastasis. Rac hyperactivation and overexpression are associated with aggressive cancers; thus, interference of the interaction of Rac with its direct upstream activators, guanine nucleotide exchange factors (GEFs), is a viable strategy for inhibiting Rac activity. We synthesized EHop-016, a novel inhibitor of Rac activity, based on the structure of the established Rac/Rac GEF inhibitor NSC23766. Herein, we demonstrate that EHop-016 inhibits Rac activity in the MDA-MB-435 metastatic cancer cells that overexpress Rac and exhibits high endogenous Rac activity. The IC(50) of 1.1 μM for Rac inhibition by EHop-016 is ~100-fold lower than for NSC23766. EHop-016 is specific for Rac1 and Rac3 at concentrations of ≤5 μM. At higher concentrations, EHop-016 inhibits the close homolog Cdc42. In MDA-MB-435 cells that demonstrate high active levels of the Rac GEF Vav2, EHop-016 inhibits the association of Vav2 with a nucleotide-free Rac1(G15A), which has a high affinity for activated GEFs. EHop-016 also inhibits the Rac activity of MDA-MB-231 metastatic breast cancer cells and reduces Rac-directed lamellipodia formation in both cell lines. EHop-016 decreases Rac downstream effects of PAK1 (p21-activated kinase 1) activity and directed migration of metastatic cancer cells. Moreover, at effective concentrations (<5 μM), EHop-016 does not affect the viability of transformed mammary epithelial cells (MCF-10A) and reduces viability of MDA-MB-435 cells by only 20%. Therefore, EHop-016 holds promise as a targeted therapeutic agent for the treatment of metastatic cancers with high Rac activity.  相似文献   

14.
Osteopontin (OPN) has been implicated as an important mediator of breast cancer progression and metastasis and has been investigated for use as a potential therapeutic target in the treatment of breast cancer. However, the in vivo antitumor effect of anti-OPN antibodies on breast cancer has not been reported. In this study, a mouse anti-human OPN antibody (1A12) was humanized by complementarity-determining region grafting method based on computer-assisted molecular modeling. A humanized version of 1A12, denoted as hu1A12, was shown to possess affinity comparable to that of its parental antibody. The ability of hu1A12 to inhibit cell migration, adhesion, invasion and colony formation was assessed in a highly metastatic human breast cancer cell line MDA-MB-435S. The results indicated that hu1A12 was effective in inhibiting the cell adhesion, migration, invasion and colony formation of MDA-MB-435S cells in vitro. hu1A12 also showed significant efficacy in suppressing primary tumor growth and spontaneous metastasis in a mouse lung metastasis model of human breast cancer. The specific epitope recognized by hu1A12 was identified to be 212NAPSD216, adjacent to the calcium binding domain of OPN. Our data strongly support that OPN is a potential target for the antibody-based therapies of breast cancer. The humanized anti-OPN antibody hu1A12 may be a promising therapeutic agent for the treatment of human breast cancer.  相似文献   

15.
16.
Zen K  Liu DQ  Guo YL  Wang C  Shan J  Fang M  Zhang CY  Liu Y 《PloS one》2008,3(3):e1826

Background

Endothelial E-selectin has been shown to play a pivotal role in mediating cell–cell interactions between breast cancer cells and endothelial monolayers during tumor cell metastasis. However, the counterreceptor for E-selectin and its role in mediating breast cancer cell transendothelial migration remain unknown.

Methodology/Principal Findings

By assessing migration of various breast cancer cells across TNF-α pre-activated human umbilical vein endothelial cells (HUVECs), we found that breast cancer cells migrated across HUVEC monolayers differentially and that transmigration was E-selectin dependent. Cell surface labeling with the E-selectin extracellular domain/Fc chimera (exE-selectin/Fc) showed that the transmigration capacity of breast cancer cells was correlated to both the expression level and localization pattern of E-selectin binding protein(s) on the tumor cell surface. The exE-selectin/Fc strongly bound to metastatic MDA-MB-231, MDA-MB-435 and MDA-MB-468 cells, but not non-metastatic MCF-7 and T47D cells. Binding of exE-selectin/Fc was abolished by removal of tumor cell surface sialyl lewis x (sLex) moieties. Employing an exE-selectin/Fc affinity column, we further purified the counterreceptor of E-selectin from metastatic breast cancer cells. The N-terminal protein sequence and cDNA sequence identified this E-selectin ligand as a ∼170 kD human CD44 variant 4 (CD44v4). Purified CD44v4 showed a high affinity for E-selectin via sLex moieties and, as expected, MDA-MB-231 cell adhesion to and migration across HUVEC monolayers were significantly reduced by down-regulation of tumor cell CD44v4 via CD44v4-specific siRNA.

Conclusions/Significance

We demonstrated, for the first time, that breast cancer cell CD44v4 is a major E-selectin ligand in facilitating tumor cell migration across endothelial monolayers. This finding offers new insights into the molecular basis of E-selectin–dependent adhesive interactions that mediate breast cancer cell transendothelial metastasis.  相似文献   

17.
In our previous work, we showed for the first time that the voltage-gated proton channel Hv1 is specifically expressed in highly metastatic human breast tumor tissues and cell lines. However, the contribution of Hv1 to breast carcinogenesis is not well known. In this study, we showed that Hv1 expression was significantly correlated with the tumor size (p = 0.001), tumor classification (p = 0.000), lymph node status (p = 0.000), clinical stage (p = 0.000), and Her-2 status (p = 0.045). High Hv1 expression was associated significantly with shorter overall (p = 0.000) and recurrence-free survival (p = 0.000). In vitro, knockdown of Hv1 expression in the highly metastatic MDA-MB-231 cells decreased the cell proliferation and invasiveness, inhibited the cell proton secretion and intracellular pH recovery, and blocked the cell capacity of acidifying extracellular milieu. Furthermore, the gelatinase activity in MDA-MB-231 cells that suppressed Hv1 was reduced. In vivo, the breast tumor size of the implantation of the MDA-MB-231 xenografts in nude mice that were knocked down by Hv1 was dramatically smaller than that in the control groups. The results demonstrated that the inhibition of Hv1 function via knockdown of Hv1 expression can effectively retard the cancer growth and suppress the cancer metastasis by the decrease of proton extrusion and the down-regulation of gelatinase activity. Based on these results, we came to the conclusion that Hv1 is a potential biomarker for prognosis of breast cancer and a potential target for anticancer drugs in breast cancer therapy.  相似文献   

18.
Brain is a common site of breast cancer metastasis associated with significant neurologic morbidity, decreased quality of life, and greatly shortened survival. However, the molecular and cellular mechanisms underpinning brain colonization by breast carcinoma cells are poorly understood. Here, we used 2D-DIGE (Difference in Gel Electrophoresis) proteomic analysis followed by LC-tandem mass spectrometry to identify the proteins differentially expressed in brain-targeting breast carcinoma cells (MB231-Br) compared with parental MDA-MB-231 cell line. Between the two cell lines, we identified 12 proteins consistently exhibiting greater than 2-fold (p<0.05) difference in expression, which were associated by the Ingenuity Pathway Analysis (IPA) with two major signaling networks involving TNFα/TGFβ-, NFκB-, HSP-70-, TP53-, and IFNγ-associated pathways. Remarkably, highly related networks were revealed by the IPA analysis of a list of 19 brain-metastasis-associated proteins identified recently by the group of Dr. A. Sierra using MDA-MB-435-based experimental system (Martin et al., J Proteome Res 2008 7:908-20), or a 17-gene classifier associated with breast cancer brain relapse reported by the group of Dr. J. Massague based on a microarray analysis of clinically annotated breast tumors from 368 patients (Bos et al., Nature 2009 459: 1005-9). These findings, showing that different experimental systems and approaches (2D-DIGE proteomics used on brain targeting cell lines or gene expression analysis of patient samples with documented brain relapse) yield highly related signaling networks, suggest strongly that these signaling networks could be essential for a successful colonization of the brain by metastatic breast carcinoma cells.  相似文献   

19.
Previous studies have shown that the rate of breast cancer metastasis correlates with the expression of vacuolar H+-ATPases (V-ATPases). However, how V-ATPase is involved in breast cancer metastasis remains unknown. Our previous study showed that Atp6v1c1-depleted osteoclasts did not form organized actin rings and that Atp6v1c1 co-localizes with F-actin. In this study, we found that the normal arrangement of filamentous actin is disrupted in Atp6v1c1-depleted 4T1 mouse breast cancer cells and in the ATP6V1C1-depleted human breast cancer cell lines MDA-MB-231 and MDA-MB-435s. We further found that Atp6v1c1 co-localizes with F-actin in 4T1 cells. The results of our study suggest that high expression of Atp6v1c1 affects the actin structure of cancer cells such that it facilitates breast cancer metastasis. The findings also indicate that Atp6v1c1 could be a novel target for breast cancer metastasis therapy.  相似文献   

20.
《Translational oncology》2020,13(6):100775
Breast cancer patients presenting with symptomatic brain metastases have poor prognosis, and current chemotherapeutic agents are largely ineffective. In this study, we evaluated the hypomethylating agent azacitidine (AZA) for its potential as a novel therapeutic in preclinical models of brain metastasis of breast cancer. We used the parental triple-negative breast cancer MDA-MB-231 (231) cells and their brain colonizing counterpart (231Br) to ascertain phenotypic differences in response to AZA. We observed that 231Br cells have higher metastatic potential compared to 231 cells. With regard to therapeutic value, the AZA IC50 value in 231Br cells is significantly lower than that in parental cells (P < .01). AZA treatment increased apoptosis and inhibited the Wnt signaling transduction pathway, angiogenesis, and cell metastatic capacity to a significantly higher extent in the 231Br line. AZA treatment in mice with experimental brain metastases significantly reduced tumor burden (P = .0112) and increased survival (P = .0026) compared to vehicle. Lastly, we observed a decreased expression of keratin 18 (an epithelial maker) in 231Br cells due to hypermethylation, elucidating a potential mechanism of action of AZA in treating brain metastases from breast cancer.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号