共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
Sterol structure dependence of insulin receptor and insulin-like growth factor 1 receptor activation
Richard J. Delle Bovi JiHyun Kim Pavana Suresh Erwin London W. Todd Miller 《生物化学与生物物理学报:生物膜》2019,1861(4):819-826
The plasma membrane is a dynamic environment with a complex composition of lipids, proteins, and cholesterol. Areas enriched in cholesterol and sphingolipids are believed to form lipid rafts, domains of highly ordered lipids. The unique physical properties of these domains have been proposed to influence many cellular processes. Here, we demonstrate that the activation of insulin receptor (IR) and insulin-like growth factor 1 receptor (IGF1R) depends critically on the structures of membrane sterols. IR and IGF1R autophosphorylation in vivo was inhibited by cholesterol depletion, and autophosphorylation was restored by the replacement with exogenous cholesterol. We next screened a variety of sterols for effects on IR activation. The ability of sterols to support IR autophosphorylation was strongly correlated to the propensity of the sterols to form ordered domains. IR autophosphorylation was fully restored by the incorporation of ergosterol, dihydrocholesterol, 7-dehydrocholesterol, lathosterol, desmosterol, and allocholesterol, partially restored by epicholesterol, and not restored by lanosterol, coprostanol, and 4-cholesten-3-one. These data support the hypothesis that the ability to form ordered domains is sufficient for a sterol to support ligand-induced activation of IR and IGF1R in intact mammalian cells. 相似文献
3.
H A Jonas R C Baxter L C Harrison 《Biochemical and biophysical research communications》1982,109(2):463-470
Polyadenylated RNA prepared from first trimester human placenta was translated in a membrane-free cell-free system derived from wheat germ. Analysis of the [35S]methionine-labeled products by SDS-polyacrylamide electrophoresis demonstrated two proteins with apparent Mrs of 14,500 and 16,000 that were specifically immunoprecipitated by antiserum to reduced and carboxylated bovine LHα, and two different proteins with apparent Mrs of 18,500 and 21,000 that were specifically immunoprecipitated by antiserum to hCGβ. None of these products was sensitive to cleavage by endoglycosidase H, whereas the Mr 21,000 product precipitated by antisera to bovine LHα and to hCGα from translations supplemented by canine pancreatic microsomes was processed to a product with Mr 13,000 by endoglycosidase H. We suggest that the two forms of the α and β subunit precursors could arise from the translation of two distinct mRNAs encoding each subunit. 相似文献
4.
5.
Regulation of insulin/insulin-like growth factor-1 signaling by proteasome-mediated degradation of insulin receptor substrate-2 总被引:12,自引:0,他引:12
Insulin and insulin-like growth factor-1 (IGF-1) regulate metabolism and body growth through homologous receptor tyrosine kinases that phosphorylate the insulin receptor substrate (IRS) proteins. IRS-2 is an important IRS protein, as it mediates peripheral insulin action and beta-cell survival. In this study, we show that insulin, IGF-1, or osmotic stress promoted ubiquitin/proteasome-mediated degradation of IRS-2 in 3T3-L1 cells, Fao hepatoma, cells and mouse embryo fibroblasts; however, insulin/IGF-1 did not promote degradation of IRS-1 in 3T3-L1 preadipocytes or mouse embryo fibroblasts. MG132 or lactacystin, specific inhibitors of 26S proteasome, blocked insulin/IGF-1-induced degradation of IRS-2 and enhanced the detection of ubiquitinated IRS-2. Insulin/IGF1-induced ubiquitination and degradation of IRS-2 was blocked by inhibitors of phosphatidylinositol 3-kinase (wortmannin or LY294002) or mTOR (rapamycin). Chronic insulin or IGF-1 treatment of IRS-1-deficient mouse embryo fibroblasts inhibited IRS-2-mediated activation of Akt and ERK1/2, which was reversed by lactacystin pretreatment. By contrast, IRS-1 activation of Akt and ERK1/2 was not inhibited by chronic insulin/IGF-1 stimulation in IRS-2-deficient mouse embryo fibroblasts. Thus, we identified a novel negative feedback mechanism by which the ubiquitin/proteasome-mediated degradation of IRS-2 limits the magnitude and duration of the response to insulin or IGF-1. 相似文献
6.
Zhao WQ Chen GH Chen H Pascale A Ravindranath L Quon MJ Alkon DL 《The Journal of biological chemistry》2003,278(6):4205-4215
Annexin II is secreted into the extracellular environment, where, via interactions with specific proteases and extracellular matrix proteins, it participates in plasminogen activation, cell adhesion, and tumor metastasis and invasion. However, mechanisms regulating annexin II transport across the cellular membrane are unknown. In this study, we used coimmunoprecipitation to show that Annexin-II was bound to insulin and insulin-like growth factor-1 (IGF-1) receptors in PC12 cells and NIH-3T3 cells overexpressing insulin (NIH-3T3(IR)) or IGF-1 receptor (NIH-3T3(IGF-1R)). Stimulation of insulin and IGF-1 receptors by insulin caused a temporary dissociation of annexin II from these receptors, which was accompanied by an increased amount of extracellular annexin II detected in the media of PC12, NIH-3T3(IR), and NIH-3T3(IGF-1R) cells but not in that of untransfected NIH-3T3 cells. Activation of a different growth factor receptor, the platelet-derived growth factor receptor, did not produce such results. Tyrphostin AG1024, a tyrosine kinase inhibitor of insulin and IGF-1 receptor, was shown to inhibit annexin II secretion along with reduced receptor phosphorylation. Inhibitors of a few downstream signaling enzymes including phosphatidylinositol 3-kinase, pp60c-Src, and protein kinase C had no effect on insulin-induced annexin II secretion, suggesting a possible direct link between receptor activation and annexin II secretion. Immunocytochemistry revealed that insulin also induced transport of the membrane-bound form of annexin II to the outside layer of the cell membrane and appeared to promote cell aggregation. These results suggest that the insulin receptor and its signaling pathways may participate in molecular mechanisms mediating annexin II secretion. 相似文献
7.
8.
9.
Background
Insulin-like growth factor-II (IGF-II) promotes cell proliferation and survival and plays an important role in normal fetal development and placental function. IGF-II binds both the insulin-like growth factor receptor (IGF-1R) and insulin receptor isoform A (IR-A) with high affinity. Interestingly both IGF-II and the IR-A are often upregulated in cancer and IGF-II acts via both receptors to promote cancer proliferation. There is relatively little known about the mechanism of ligand induced activation of the insulin (IR) and IGF-1R. The recently solved IR structure reveals a folded over dimer with two potential ligand binding pockets arising from residues on each receptor half. Site-directed mutagenesis has mapped receptor residues important for ligand binding to two separate sites within the ligand binding pocket and we have recently shown that the IGFs have two separate binding surfaces which interact with the receptor sites 1 and 2.Methodology/Principal Findings
In this study we describe a series of partial IGF-1R and IR agonists generated by mutating Glu12 of IGF-II. By comparing receptor binding affinities, abilities to induce negative cooperativity and potencies in receptor activation, we provide evidence that residue Glu12 bridges the two receptor halves leading to receptor activation.Conclusions/Significance
This study provides novel insight into the mechanism of receptor binding and activation by IGF-II, which may be important for the future development of inhibitors of its action for the treatment of cancer. 相似文献10.
Insulin receptor substrates-1 and 2 (IRS-1 and IRS-2) are pivotal in relaying insulin signaling in insulin-responsive tissues such as muscle. However, the precise contribution of IRS-1 vis-a-vis IRS-2 in insulin-mediated metabolic and mitogenic responses has not been compared directly in differentiated muscle cells. This study aimed to determine the relative contribution of IRS-1 versus IRS-2 in these responses, using small interfering RNA (siRNA)-mediated specific gene silencing. In L6 myotubes, transfection of siRNA targeted specifically against IRS-1 (siIRS-1) or IRS-2 (siIRS-2) reduced the cognate protein expression by 70-75%. Insulin-induced ERK phosphorylation was much more sensitive to IRS-2 than IRS-1 ablation, whereas p38MAPK phosphorylation was reduced by 43 or 62% in myotubes treated with siIRS-1 or siIRS-2, respectively. Insulin-induced Akt1 and Akt2 phosphorylation was reduced in myotubes treated with siIRS-1, but only Akt2 phosphorylation was reduced in myotubes treated with siIRS-2. In contrast, siIRS-1 treatment caused a marked reduction in insulin-induced actin remodeling, glucose uptake, and GLUT4 translocation, and siIRS-2 was without effect on these responses. Notably, combined siIRS-1 and siIRS-2, although reducing each IRS by around 75%, caused no further drop in glucose uptake than that achieved with siIRS-1 alone, but abolished p38MAPK phosphorylation. We conclude that insulin-stimulated Akt1 phosphorylation, actin remodeling, GLUT4 translocation, and glucose uptake are regulated mainly by IRS-1, whereas IRS-2 contributes selectively to ERK signaling, and Akt2 and p38MAPK lie downstream of both IRS in muscle cells. 相似文献
11.
Yancun Yin Hui Hua Minjing Li Shu Liu Qingbin Kong Ting Shao Jiao Wang Yuanming Luo Qian Wang Ting Luo Yangfu Jiang 《Cell research》2016,26(1):46-65
Mammalian target of rapamycin (mTOR) is a core component of raptor-mTOR (mTORC1) and rictor-mTOR (mTORC2) complexes that control diverse cellular processes. Both mTORC1 and mTORC2 regulate several elements downstream of type I insulin-like growth factor receptor (IGF-IR) and insulin receptor (InsR). However, it is unknown whether and how mTOR regulates IGF-IR and InsR themselves. Here we show that mTOR possesses unexpected tyrosine kinase activity and activates IGF-IR/InsR. Rapamycin induces the tyrosine phosphorylation and activation of IGF-IR/InsR, which is largely dependent on rictor and mTOR. Moreover, mTORC2 promotes ligand-induced activation of IGF-IR/InsR. IGF- and insulin-induced IGF-IR/InsR phosphorylation is significantly compromised in rictor-null cells. Insulin receptor substrate (IRS) directly interacts with SIN1 thereby recruiting mTORC2 to IGF-IR/InsR and promoting rapamycin- or ligand-induced phosphorylation of IGF-IR/InsR. mTOR exhibits tyrosine kinase activity towards the general tyrosine kinase substrate poly(Glu-Tyr) and IGF-IR/InsR. Both recombinant mTOR and immunoprecipitated mTORC2 phosphorylate IGF-IR and InsR on Tyr1131/1136 and Tyr1146/1151, respectively. These effects are independent of the intrinsic kinase activity of IGF-IR/InsR, as determined by assays on kinase-dead IGF-IR/InsR mutants. While both rictor and mTOR immunoprecitates from rictor+/+ MCF-10A cells exhibit tyrosine kinase activity towards IGF-IR and InsR, mTOR immunoprecipitates from rictor−/− MCF-10A cells do not induce IGF-IR and InsR phosphorylation. Phosphorylation-deficient mutation of residue Tyr1131 in IGF-IR or Tyr1146 in InsR abrogates the activation of IGF-IR/InsR by mTOR. Finally, overexpression of rictor promotes IGF-induced cell proliferation. Our work identifies mTOR as a dual-specificity kinase and clarifies how mTORC2 promotes IGF-IR/InsR activation. 相似文献
12.
Insulin and insulin-like growth factor-I (IGF-I) receptors are highly homologous tyrosine kinase receptors that share many common steps in their signaling pathways and have ligands that can bind to either receptor with differing affinities. To define precisely the signaling specific to the insulin receptor (IR) or the IGF-I receptor, we have generated brown preadipocyte cell lines that lack either receptor (insulin receptor knockout (IRKO) or insulin-like growth factor receptor knockout (IGFRKO)). Control preadipocytes expressed fewer insulin receptors than IGF-I receptors (20,000 versus 60,000), but during differentiation, insulin receptor levels increased so that mature adipocytes expressed slightly more insulin receptors than IGF-I receptors (120,000 versus 100,000). In these cells, insulin stimulated IR homodimer phosphorylation, whereas IGF-I activated both IGF-I receptor homodimers and hybrid receptors. Insulin-stimulated IRS-1 phosphorylation was significantly impaired in IRKO cells but was surprisingly elevated in IGFRKO cells. IRS-2 phosphorylation was unchanged in either cell line upon insulin stimulation. IGF-I-dependent phosphorylation of IRS-1 and IRS-2 was ablated in IGFRKO cells but not in IRKO cells. In control cells, both insulin and IGF-I produced a dose-dependent increase in phosphorylated Akt and MAPK, although IGF-I elicited a stronger response at an equivalent dose. In IRKO cells, the insulin-dependent increase in phospho-Akt was completely abolished at the lowest dose and reached only 20% of the control stimulation at 10 nm. Most interestingly, the response to IGF-I was also impaired at low doses, suggesting that IR is required for both insulin- and IGF-I-dependent phosphorylation of Akt. Most surprisingly, insulin- or IGF-I-dependent phosphorylation of MAPK was unaltered in either receptor-deficient cell line. Taken together, these results indicate that the insulin and IGF-I receptors contribute distinct signals to common downstream components in response to both insulin and IGF-I. 相似文献
13.
J L Treadway B D Morrison I D Goldfine J E Pessin 《The Journal of biological chemistry》1989,264(36):21450-21453
Insulin and Mn/MgATP treatment of immunoaffinity-purified alpha beta heterodimeric insulin receptors induced the formation of an alpha 2 beta 2 heterotetrameric insulin receptor complex. In contrast, insulin-like growth factor-1 (IGF-1) treatment was completely ineffective in inducing the association of alpha beta heterodimeric insulin receptors. Similarly, IGF-1 or Mn/MgATP, but not insulin, treatment of immunoaffinity-purified alpha beta heterodimeric IGF-1 receptors induced the formation of an alpha 2 beta 2 heterotetrameric IGF-1 receptor complex. A monoclonal antibody specific for the insulin receptor (MA5) completely immunoprecipitated all the insulin binding activity from both the alpha 2 beta 2 heterotetrameric and alpha beta heterodimeric insulin receptor complexes but did not immunoprecipitate IGF-1 receptors. Conversely, the IGF-1 receptor-specific monoclonal antibody (alpha IR-3) immunoprecipitated all the IGF-1 binding activity, but not insulin receptors. The simultaneous treatment of pooled equal amounts of alpha beta heterodimeric insulin and IGF-1 receptors with a combination of insulin and IGF-1 resulted in the formation of alpha 2 beta 2 heterotetrameric insulin and IGF-1 receptor complexes. However, in the mixed alpha 2 beta 2 heterotetrameric receptor fraction MA5 immunoprecipitated 94% of the insulin binding in addition to 27% of the IGF-1 binding activity whereas alpha IR-3 immunoprecipitated 97% of the IGF-1 binding in addition to 38% of the insulin binding activity. Treatment of the mixed alpha beta heterodimeric insulin and IGF-1 receptors with Mn/MgATP also resulted in the formation of cross-immunoreactive (42-46%) alpha 2 beta 2 heterotetrameric receptors. These data directly demonstrate the formation of insulin/IGF-1 hybrid receptors by both a combination of insulin plus IGF-1 or Mn/MgATP treatment of purified human placenta alpha beta heterodimeric insulin and IGF-1 half-receptors in vitro. 相似文献
14.
Rakatzi I Stosik M Gromke T Siddle K Eckel J 《Archives of physiology and biochemistry》2006,112(1):37-47
The specific contribution of insulin and IGF-I receptors to IRS-protein activation remains elusive. We studied the signalling properties of AspB10-insulin, an analog with enhanced affinity for the IGF-I receptor, in comparison to native insulin using primary human skeletal muscle cells. In myoblasts regular insulin and AspB10-insulin were equipotent in stimulating the IRS cascade, whereas this analog induced a significantly higher Shc phosphorylation. Phosphorylation of IRS-1 in response to insulin was inhibited equally by blocking either the insulin or the IGF-I receptor. IRS-1 activation by AspB10-insulin was only inhibited by blocking the IGF-I receptor. IRS-2 phosphorylation induced by both insulin and AspB10-insulin was nearly insensitive to blocking the insulin receptor, being predominantly mediated by the IGF-I receptor. We conclude that in myoblasts IRS-2, but not IRS-1, functions as preferred substrate for the IGF-I receptor. These data suggest a specific role for IRS-2 in growth and differentiation of human skeletal muscle. 相似文献
15.
Tyrosine kinase-independent activation of extracellular-regulated kinase (ERK) 1/2 by the insulin-like growth factor-1 receptor 总被引:1,自引:0,他引:1
The extracellular-regulated kinase (ERK1/2) is a key conduit for transduction of signals from growth factor receptors to the nucleus. Previous work has shown that ERK1/2 activation in response to IGF-1 may require the participation of G proteins, but the role of the receptor tyrosine kinase in this process has not been clearly resolved. This investigation of IGF-1 receptor function was therefore designed to examine the contribution of the receptor tyrosine kinase to ERK1/2 activation. Phosphorylation of ERK1/2 in smooth muscle cells following treatment with IGF-1 was not blocked by pretreatment with AG1024 or picropodophylin, inhibitors of the IGF-1 receptor tyrosine kinase. Likewise, IGF-1 activated ERK1/2 in cells expressing a kinase-dead mutant of the IGF-1 receptor. ERK1/2 activation was unaffected by the phosphatidylinositol 3-kinase inhibitor LY-294002, but was sensitive to inhibitors of Src kinase, phospholipase C and Gβγ subunit signalling. Treatment with αIR-3, a neutralizing monoclonal antibody, also stimulated ERK1/2 phosphorylation without concomitant activation of the receptor tyrosine kinase. Phosphoprotein mapping of IGF-1 and αIR-3 treated cells confirmed that antibody-induced ERK1/2 phosphorylation occurred in the absence of tyrosine kinase phosphorylation, and enabled extension of these findings to p38 MAPK. These results suggest that stimulation of ERK1/2 phosphorylation by IGF-1 does not require activation of the receptor tyrosine kinase. 相似文献
16.
RACK1 recruits STAT3 specifically to insulin and insulin-like growth factor 1 receptors for activation, which is important for regulating anchorage-independent growth 下载免费PDF全文
Zhang W Zong CS Hermanto U Lopez-Bergami P Ronai Z Wang LH 《Molecular and cellular biology》2006,26(2):413-424
Current understanding of the activation of STATs is through binding between the SH2 domain of STATs and phosphotyrosine of tyrosine kinases. Here we demonstrate a novel role of RACK1 as an adaptor for insulin and insulin-like growth factor 1 receptor (IGF-1R)-mediated STAT3 activation specifically. Intracellular association of RACK1 via its N-terminal WD domains 1 to 4 (WD1-4) with insulin receptor (IR)/IGF-1R is augmented upon respective ligand stimulation, whereas association with STAT3 is constitutive. Purified RACK1 or RACK1 WD1-4 associates directly with purified IR, IGF-1R, and STAT3 in vitro. Insulin induces multiprotein complex formation of RACK1, IR, and STAT3. Overexpression or downregulation of RACK1 greatly enhances or decreases, respectively, IR/IGF-1R-mediated activation of STAT3 and its target gene expression. Site-specific mutants of IR and IGF-1R impaired in RACK1 binding are ineffective in mediating recruitment and activation of STAT3 as well as in insulin- or IGF-1-induced protection of cells from anoikis. RACK1-mediated STAT3 activation is important for insulin and IGF-1-induced anchorage-independent growth in certain ovarian cancer cells. We conclude that RACK1 mediates recruitment of STAT3 to IR and IGF-1R specifically for activation, suggesting a general paradigm for the need of an adaptor in mediating activation of STATs by receptor protein tyrosine kinases. 相似文献
17.
The ability of plant lectins to modify the interactions of the insulin receptor (IR) and insulin-like growth factor (IGF) receptors (IGFRs) with their ligands was investigated. The lectins profoundly affected the competition-binding curves for (125)I-labelled IGF-I and insulin, causing an increase in the affinity of placental IGF1R and IR towards their ligands. This increment was of such a magnitude that it could affect the receptors' specificity towards these ligands. The lower the ligand concentration, the greater was the lectin-induced affinity shift, which suggests potential physiological significance of the effect. The affinity modulation occurred in a lectin-specific and dose-dependent manner. In contrast to IGF1R and IR, the binding of (125)I-labelled IGF-II to its receptors resisted lectin modulation. Here we provide evidence of the possibility of external modulation of the affinity of placental IGF1R and IR via interactions of the receptors' carbohydrate moieties with lectins. The existence of modulators that would selectively inhibit or enhance the binding of IGFs or insulin to their corresponding receptors may have important implications for placental cell responses to these molecules. 相似文献
18.
Woldt E Matz RL Terrand J Mlih M Gracia C Foppolo S Martin S Bruban V Ji J Velot E Herz J Boucher P 《The Journal of biological chemistry》2011,286(19):16775-16782
The low density lipoprotein receptor-related protein (LRP1) is a transmembrane receptor that integrates multiple signaling pathways. Its cytoplasmic domain serves as docking sites for several adaptor proteins such as the Src homology 2/α-collagen (ShcA), which also binds to several tyrosine kinase receptors such as the insulin-like growth factor 1 (IGF-1) receptor. However, the physiological significance of the physical interaction between LRP1 and ShcA, and whether this interaction modifies tyrosine kinase receptor signaling, are still unknown. Here we report that LRP1 forms a complex with the IGF-1 receptor, and that LRP1 is required for ShcA to become sensitive to IGF-1 stimulation. Upon IGF-1 treatment, ShcA is tyrosine phosphorylated and translocates to the plasma membrane only in the presence of LRP1. This leads to the recruitment of the growth factor receptor-bound protein 2 (Grb2) to ShcA, and activation of the Ras/MAP kinase pathway. Conversely, in the absence of ShcA, IGF-1 signaling bifurcates toward the Akt/mammalian target of rapamycin pathway and accelerates adipocyte differentiation when cells are stimulated for adipogenesis. These results establish the LRP1-ShcA complex as an essential component in the IGF-1-regulated pathway for MAP kinase and Akt/mammalian target of rapamycin activation, and may help to understand the IGF-1 signaling shift from clonal expansion to growth-arrested cells and differentiation during adipogenesis. 相似文献
19.
Reciprocal modulation of insulin and insulin-like growth factor-I receptor affinity by calcium 总被引:1,自引:0,他引:1
In contrast to its stimulation of insulin binding to human placental membranes, calcium inhibited the binding of insulin-like growth factor-I. The effects on receptors for both peptides were half-maximal at 2 mM calcium, and were entirely due to alterations in high affinity binding sites for the respective ligands. Calcium decreased the affinity of insulin-like growth factor-I sites, while stimulating the expression of high affinity insulin sites. Competition by each peptide at the receptor for the other peptide was enhanced by calcium. Modulation by calcium might provide a mechanism to amplify functional differences between the two structurally similar receptors. 相似文献
20.
We have compared the characteristics of IGF-I and insulin receptors in placentas of normals and insulin dependent diabetic patients. Specific binding of both IGF-I and insulin in placental membranes from patients with good glycemic control (as reflected by blood hemoglobin content) was unaltered while that in the placental membranes from the patients with poor glycemic control was increased to approximately 20% of the normals. This observed small but significant (p less than 0.05) increase in binding of IGF-I and insulin to placental membranes from diabetic patients with poor glycemic control was further magnified, approximately twice (p less than 0.001) the normal, when the membrane receptors were purified by lectin chromatography. The kinetic analysis of IGF-I and insulin binding in both membranes and lectin purified receptors revealed that the increased binding of insulin and IGF-I to the placentas from diabetic patients with poor glycemic control was due to an approximately 2 fold increase (p less than 0.001-0.05) in the receptor numbers without any significant changes of the affinities. The molecular characteristics of the receptors in these diabetic patients, as revealed by the cross-linking studies, did not reveal any changes when compared to the normals. The parallel changes of IGF-I and insulin receptors, shown here, are in accordance with the homologous nature of these two receptors. The increased receptor numbers of these two interrelated hormones in placentas of diabetics with poor glycemic control may be relevant to the altered placental functions in diabetic pregnancy. 相似文献