首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Repair or misrepair of DNA double-strand breaks (DSBs) is critical in determining cellular survival after gamma-irradiation. In this report, we focus on the cellular and biochemical consequences of restriction enzyme induced DSBs in wild-type Chinese hamster ovary (CHO) cells and the DNA DSB repair-defective mutant XR-1. We find that XR-1 possesses reduced cellular survival after the introduction of restriction enzymes that produce either cohesive or blunt ends. XR-1's sensitivity to killing by restriction enzymes strongly mimics its response to gamma-rays. Using pulsed field electrophoresis, we find that for each enzyme, similar numbers of DNA DSBs are being introduced in both cell lines. The simplest explanation for the increased sensitivity to restriction enzymes in the mutant is that the biochemical defect in XR-1 is not confined to the repair of ionizing radiation induced ends, but extends to DSBs that possess ligatable 3'-hydroxyl and 5'-phosphate ends as well.  相似文献   

2.
Summary This review summarizes the current research on the biochemical defect leading to ataxia-telangiectasia (AT). A DNA repair defect has been linked to AT, although the precise defect has not been found. A critical examination of the evidence for and against a DNA repair defect in AT is presented. Consideration of other recent data on AT raises the possibility that AT may not primarily be the result of a DNA repair defect. Therefore, in this review AT is approached as a syndrome which is defective in the ability to respond to ionizing-radiation-type damage, rather than defective in the ability to repair this damage. However, this does not necessarily exclude the potential involvement of a DNA repair defect in some of the genetically distinct subsets present in AT. Other recent anomalies found in AT, including an altered cell cycle and DNA synthesis profile following ionizing-radiation damage, are also assessed. A suggestion to account for the underlying defect in AT, based on the various research reports, is presented.  相似文献   

3.
Trichothiodystrophy (TTD) is a rare autosomal recessive disorder characterized by brittle hair, mental and growth retardation, peculiar face, ichthyosis, and in 20% of the reported cases photosensitivity. Cellular photosensitivity due to the same genetic defect present in xeroderma pigmentosum group D (XP-D) has been described in several patients. Nine patients with clinical symptoms diagnostic for TTD have been identified in Italy to date. We report the results of DNA repair investigations performed in cultured fibroblasts from these patients and 8 TTD parents. Survival, DNA repair synthesis and RNA synthesis following UV irradiation were all normal in the 8 TTD heterozygous cell strains. Among the 9 TTD-affected individuals, normal cellular UV sensitivity was observed in the 2 patients without signs of clinical photosensitivity. In contrast, the other 7 TTD cell strains showed a notable reduction in UV-induced DNA repair synthesis (UDS) levels, ranging between 40% and 5-15% of normal values. Complementation analysis indicated that in the repair-deficient TTD cell strains the genetic defect is the same as that present in XP-D cells. The biochemical heterogeneity of the XP-D defect in TTD patients characterized by different degrees of defective UDS results in different patterns of response to the killing effect of UV light in non-proliferating cells.  相似文献   

4.
Replication protein A (RPA), the major eukaryotic single-strand DNA (ssDNA)-binding protein, is essential for replication, repair, recombination, and checkpoint activation. Defects in RPA-associated cellular activities lead to genomic instability, a major factor in the pathogenesis of cancer and other diseases. ssDNA binding activity is primarily mediated by two domains in the 70-kDa subunit of the RPA complex. These ssDNA interactions are mediated by a combination of polar residues and four conserved aromatic residues. Mutation of the aromatic residues causes a modest decrease in binding to long (30-nucleotide) ssDNA fragments but results in checkpoint activation and cell cycle arrest in cells. We have used a combination of biochemical analysis and knockdown replacement studies in cells to determine the contribution of these aromatic residues to RPA function. Cells containing the aromatic residue mutants were able to progress normally through S-phase but were defective in DNA repair. Biochemical characterization revealed that mutation of the aromatic residues severely decreased binding to short ssDNA fragments less than 20 nucleotides long. These data indicate that altered binding of RPA to short ssDNA intermediates causes a defect in DNA repair but not in DNA replication. These studies show that cells require different RPA functions in DNA replication and DNA repair.  相似文献   

5.
6.
The identification of cellular deficiencies in the ability to repair damage in DNA in individuals with several cancer-prone genetic disorders, has led to the idea that defective DNA repair results in cancer. In patients with trichothiodystrophy, however, a recently discovered defect in the repair of ultraviolet damage in DNA is not associated with cancer-proneness. Thus our previous ideas about the connections between DNA repair capacity and cancer susceptibility need to be reevaluated.  相似文献   

7.
The ability of yeast DNA polymerase mutant strains to carry out repair synthesis after UV irradiation was studied by analysis of postirradiation molecular weight changes in cellular DNA. Neither DNA polymerase alpha, delta, epsilon, nor Rev3 single mutants evidenced a defect in repair. A mutant defective in all four of these DNA polymerases, however, showed accumulation of single-strand breaks, indicating defective repair. Pairwise combination of polymerase mutations revealed a repair defect only in DNA polymerase delta and epsilon double mutants. The extent of repair in the double mutant was no greater than that in the quadruple mutant, suggesting that DNA polymerases alpha and Rev3p play very minor, if any, roles. Taken together, the data suggest that DNA polymerases delta and epsilon are both potentially able to perform repair synthesis and that in the absence of one, the other can efficiently substitute. Thus, two of the DNA polymerases involved in DNA replication are also involved in DNA repair, adding to the accumulating evidence that the two processes are coupled.  相似文献   

8.
Normal DNA ligase activity in a gamma-ray-sensitive Chinese hamster mutant   总被引:1,自引:0,他引:1  
A Chinese hamster cell mutant (XR-1) was previously described that is extremely deficient in the repair of double-strand DNA breaks produced by gamma-irradiation during the sensitive G1--early-S period and somewhat deficient in repair of gamma-ray-induced single-strand DNA breaks. To determine whether a deficiency in DNA ligase activity might underlie the biochemical defect, protein extracts from mutant and parental cells were examined for their ability to ligate single- and double-strand breaks in DNA. The kinetics of ligation of single 5'-phosphate-3'-hydroxyl breaks in double-stranded DNA were the same in protein extracts from both cells. After separation of protein extracts by gel-filtration chromatography, the percentage of activity in the large and small molecular forms of DNA ligase was also similar in the two cells. Finally, protein extracts prepared from exponentially growing or G1-synchronized mutant and parental cells were equal in their ability to ligate blunt-end DNA substrates. These data suggest that a deficiency in DNA ligase is not the cause of the repair defect in the XR-1 mutant cell.  相似文献   

9.
10.
Xeroderma pigmentosum (XP) and Cockayne syndrome (CS) are two rare inherited disorders with a clinical and cellular hypersensitivity to the UV component of the sunlight spectrum. Although the two traits are generally considered as clinically and genetically distinct entities, on the biochemical level a defect in the nucleotide excision-repair (NER) pathway is involved in both. Classical CS patients are primarily deficient in the preferential repair of DNA damage in actively transcribed genes, whereas in most XP patients the genetic defect affects both "preferential" and "overall" NER modalities. Here we report a genetic study of two unrelated, severely affected patients with the clinical characteristics of CS but with a biochemical defect typical of XP. By complementation analysis, using somatic cell fusion and nuclear microinjection of cloned repair genes, we assign these two patients to XP complementation group G, which previously was not associated with CS. This observation extends the earlier identification of two patients with a rare combined XP/CS phenotype within XP complementation groups B and D, respectively. It indicates that some mutations in at least three of the seven genes known to be involved in XP also can result in a picture of partial or even full-blown CS. We conclude that the syndromes XP and CS are biochemically closely related and may be part of a broader clinical disease spectrum. We suggest, as a possible molecular mechanism underlying this relation, that the XPGC repair gene has an additional vital function, as shown for some other NER genes.  相似文献   

11.
It has been suggested that DNA strand breaks are the molecular lesions responsible for radiation-induced lethality and that their repair is the basis for the recovery of irradiated cells from sublethal and potentially lethal damage. EM9 is a Chinese hamster ovary cell line that is hypersensitive to killing by X rays and has been reported to have a defect in the rate of rejoining of DNA single-strand breaks. To establish the importance of DNA strand-break repair in cellular recovery from sublethal and potentially lethal X-ray damage, those two parameters, recovery from sublethal and potentially lethal damage, were studied in EM9 cells as well as in EM9's parental repair-proficient strain, AA8. As previously reported, EM9 is the more radiosensitive cell line, having a D0 of 0.98 Gy compared to a D0 of 1.56 Gy for AA8 cells. DNA alkaline elution studies suggest that EM9 cells repair DNA single-strand breaks at a slower rate than AA8 cells. Neutral elution analysis suggests that EM9 cells also repair DNA double-strand breaks more slowly than AA8 cells. All of these data are consistent with the hypothesis that DNA strand-break ligation is defective in EM9 cells and that this defect accounts for increased radiosensitivity. The kinetics and magnitude of recovery from sublethal and potentially lethal damage, however, were similar for both EM9 and AA8 cells. Six-hour recovery ratios for sublethal damage repair were found to be 2.47 for AA8 cells and 1.31 for EM9 cells. Twenty-four-hour recovery ratios for potentially lethal damage repair were 3.2 for AA8 and 3.3 for EM9 cells. Both measurements were made at approximately equitoxic doses. Thus, the defect in EM9 cells that confers radiosensitivity and affects DNA strand-break rejoining does not affect sublethal damage repair or potentially lethal damage repair.  相似文献   

12.
Retroviral DNA integration creates a discontinuity in the host cell chromatin and repair of this damage is required to complete the integration process. As integration and repair are essential for both viral replication and cell survival, it is possible that specific interactions with the host DNA repair systems might provide new cellular targets for human immunodeficiency virus therapy. Various genetic, pharmacological, and biochemical studies have provided strong evidence that postintegration DNA repair depends on components of the nonhomologous end-joining (NHEJ) pathway (DNA-PK (DNA-dependent protein kinase), Ku, Xrcc4, DNA ligase IV) and DNA damage-sensing pathways (Atr (Atm and Rad related), gamma-H2AX). Furthermore, deficiencies in NHEJ components result in susceptibility to apoptotic cell death following retroviral infection. Here, we review these findings and discuss other ways that retroviral DNA intermediates may interact with the host DNA damage signaling and repair pathways.  相似文献   

13.
A Chinese hamster cell mutant (XR-1) was previously described that is extremely deficient in the repair of double-strand DNA breaks produced by γ-irradiation during the sensitive G1-early-S period and somewhat deficient in repair of γ-ray-induced single-strand DNA breaks. To determine whether a deficiency in DNA ligase activity might underlie the biochemical defect, protein extracts from mutant and parental cells were examined for their ability to ligate single- and double-strand breaks in DNA. The kinetics of ligation of single 5′-phosphate-3′-hydroxyl breaks in double stranded DNA were the same in protein extracts from both cells. After separation of protein extracts by gel-filtration chromatography, the percentage of activity in the large and small molecular forms of DNA ligase was also similar in the two cells. Finally, protein extracts prepared from exponentially growing or G1-synchronized mutant and parental cells were equal in their ability to ligate blunt-end DNA substrates. These data suggest that a deficiency in DNA ligase is not the cause of the repair defect in the XR-1 mutant cell.  相似文献   

14.
15.
16.
W Ferro 《Mutation research》1985,149(3):399-408
We investigated larval sensitivity to UV and repair of UV- and X-ray-induced lesions in the DNA of the ebony strain compared to a wild-type strain (Canton S). The ebony strain was previously characterized as being more sensitive to UV-induced killing of embryos than Canton S. Also the ebony strain is more sensitive to X-rays for induction of larval killing, dominant lethals and recessive lethals. In this paper it is demonstrated that (1) ebony larvae are more sensitive to killing by UV and less proficient in photoreactivation (PR) ability than Canton S larvae; (2) the ebony strain has a defect in PR repair of endonuclease-sensitive sites induced in the DNA of primary cell cultures by UV irradiation; (3) the ebony strain has a defect in the repair of single-strand breaks induced in the DNA by X-rays (again in primary cell cultures), at least early on in the repair incubation. A rough localization of the UV sensitivity and the PR ability is presented and the possible relevance of the biochemical to the genetic results is discussed.  相似文献   

17.
Eukaryotic cells are able to mount several genetically complex cellular responses to DNA damage. The yeast Saccharomyces cerevisiae is a genetically well characterized organism that is also amenable to molecular and biochemical studies. Hence, this organism has provided a useful and informative model for dissecting the biochemistry and molecular biology of DNA repair in eukaryotes.  相似文献   

18.
19.
Base excision repair (BER) is a critical pathway in cellular defense against endogenous or exogenous DNA damage. This elaborate multistep process is initiated by DNA glycosylases that excise the damaged base, and continues through the concerted action of additional proteins that finally restore DNA to the unmodified state. BER has been subject to detailed biochemical analysis in bacteria, yeast and animals, mainly through in vitro reproduction of the entire repair reaction in cell‐free extracts. However, an understanding of this repair pathway in plants has consistently lagged behind. We report the extension of BER biochemical analysis to plants, using Arabidopsis cell extracts to monitor repair of DNA base damage in vitro. We have used this system to demonstrate that Arabidopsis cell extracts contain the enzymatic machinery required to completely repair ubiquitous DNA lesions, such as uracil and abasic (AP) sites. Our results reveal that AP sites generated after uracil excision are processed both by AP endonucleases and AP lyases, generating either 5′‐ or 3′‐blocked ends, respectively. We have also found that gap filling and ligation may proceed either through insertion of just one nucleotide (short‐patch BER) or several nucleotides (long‐patch BER). This experimental system should prove useful in the biochemical and genetic dissection of BER in plants, and contribute to provide a broader picture of the evolution and biological relevance of DNA repair pathways.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号