首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
One hundred thirteen HSV-specific CD4+ T cell clones were established from the PBL of a healthy person and their functional heterogeneity was investigated. All clones proliferated in response to stimulation with HSV in the presence of autologous APC. Among those, 48 clones showed cytotoxic activity to HSV-infected autologous EBV-transformed lymphoblastoid cell line, but not to HSV-infected autologous fibroblasts, HSV-infected allogeneic cells, or K562 cells (group 1). Five clones showed cytotoxicity against HSV-infected autologous cells as well as HSV-infected allogeneic cells and K562 cells (group 2). The cytotoxicity of these clones was found to be mediated by the direct killing but not by the "innocent bystander" killing of target cells. Sixty clones showed no cytotoxic activity, however, among these, 23 revealed HLA-unrestricted and nonspecific cytotoxicity in the presence of PHA in culture (group 3), and the remaining 37 did not show any cytotoxic activity even in the presence of PHA (group 4). The cytotoxic patterns of these clones did not change in activated and resting phases, suggesting that the difference in cytotoxic ability does not depend on cell cycles. The cytotoxic activity of group 1 was inhibited by addition of anti-HLA-DR or anti-CD3 mAb to the culture, whereas these mAb had no effect on the cytotoxicity of group 2. All four groups of clones had helper activity for anti-HSV antibody production by autologous B cells. Moreover it was found that all groups of clones simultaneously produced IL-2, IL-4, and IFN-gamma after culture with APC followed by HSV Ag stimulation. The surface phenotype of all clones was uniformly CD2+, CD3+, CD4+, CD8-, CD29+, CD45RA-, but expression of Leu 8 was varied. These data therefore indicate that HSV-specific human CD4+ T cells are classified into at least four groups according to the presence and specificity of cytotoxicity, i.e., Th cells with HSV-specific and HLA-class II-restricted cytotoxicity, Th cells with HLA-unrestricted and nonspecific cytotoxicity, Th cells with lectin-dependent cytotoxicity, and Th cells without cytotoxic activity. The present finding of functional heterogeneity among virus-specific human CD4+ T cells might shed light on the pathogenesis of CD4+ T cell immunodeficiency, such as human retrovirus infections.  相似文献   

2.
Stimulation with live dengue virus of peripheral blood mononuclear cells from a dengue virus type 4-immune donor generated virus-specific, serotype-cross-reactive, CD8+, class I-restricted cytotoxic T lymphocytes (CTL) capable of lysing dengue virus-infected cells and cells pulsed with dengue virus antigens of all four serotypes. These CTL lysed autologous fibroblasts infected with vaccinia virus-dengue virus recombinant viruses containing the E gene or several nonstructural dengue virus type 4 genes. These results demonstrate that both dengue virus structural and nonstructural proteins are targets for the cytotoxic T-cell-mediated immune response to dengue virus and suggest that serotype-cross-reactive CD8+ CTL may be important mediators of viral clearance and of virus-induced immunopathology during secondary dengue virus infections.  相似文献   

3.
4.
This brief review focuses on the way that our understanding of virus-specific CD8(+) T-cell-mediated immunity evolved, giving particular attention to the early impact of the program at the Australian National University. The story developed through a sequence of distinct eras, each of which can be defined in the context of the technologies available at that time. The progress has been enormous, but there is a great deal still to be learned. A particular challenge is to use what we know for human benefit.  相似文献   

5.
PBMC from healthy adult individuals seropositive for measles virus (MV) were tested for their capacity to proliferate to UV-inactivated MV (UV-MV) or to autologous MV-infected EBV-transformed B cell lines (EBV-BC). MV-specific T cell responses were observed in 11 of 15 donors tested (stimulation index greater than 2), when optimal doses of UV-MV were used in proliferative assays. T cell clones were generated from PBMC of three donors responding to MV, by using either UV-MV or MV-infected autologous EBV-BC as APC. Stimulation with UV-MV generated exclusively CD3+ CD4+ CD8- MV-specific T cells, whereas after stimulation of PBMC with MV-infected EBV-BC, both CD3+ CD4+ CD8- and CD3+ CD4- CD8+ MV-specific T cell clones were obtained. Of 19 CD4+ T cell clones tested so far, 7 clones reacted specifically with purified fusion protein and 1 with purified hemagglutinin protein. Seven clones proliferated in response to the internal proteins of MV. Three clones reacted to whole virus but not to one of the purified proteins, whereas one clone seemed to recognize more than one polypeptide. Some of the T cell clones, generated from in vitro stimulation of PBMC with UV-MV, failed to recognize MV Ag when MV-infected EBV-BC were used as APC instead of UV-MV and PBMC. CD3+ CD4+ CD8- T cell clones recognized MV in association with HLA class II Ag (HLA-DQ or -DR), and most of them displayed CTL activity to autologous MV-infected EBV-BC. All CD4+ HLA class II-restricted CTL clones thus far tested were capable of assisting B lymphocytes for the production of MV-specific antibody. The CD4- CD8+ T cell clone MARO 1 recognized MV in association with HLA class I molecules and displayed cytotoxic activity toward MV-infected EBV-BC.  相似文献   

6.
Vaccinia virus-specific CD8+ cytotoxic T lymphocytes in humans.   总被引:3,自引:0,他引:3       下载免费PDF全文
Stimulation of human vaccinia virus immune peripheral blood mononuclear cells in vitro from vaccinia virus-immune donors with live vaccinia virus-infected autologous cells generated vaccinia virus-specific cytotoxic T lymphocytes (CTL) capable of lysing vaccinia virus-infected cells. We generated vaccinia virus-specific CD8+ clones and CD4+ CTL lines by limiting dilution from two donors by using peripheral blood mononuclear cells obtained 2 months or 4 years postrevaccination with vaccinia virus. These results demonstrate that vaccinia virus-specific CTL are generated as a result of immunization of humans with vaccinia virus and that both CD8(+)- and CD4(+)-specific T cells are maintained as memory cells.  相似文献   

7.
These studies defined SRV-2 envelope peptides 96-102, 127-152, and 233-249 as T cell epitopes that induce significant T cell proliferation. Peripheral blood lymphocytes of Celebes macaques (Macaca nigra) exposed to SRV-2 and currently virus- antibody+, cultured with SRV-2 virus show strongly suppressed T cell responses and have two immunoregulatory T cell populations.  相似文献   

8.
HSV type 1 (HSV-1) expresses its genes sequentially as immediate early (α), early (β), leaky late (γ1), and true late (γ2), where viral DNA synthesis is an absolute prerequisite only for γ2 gene expression. The γ1 protein glycoprotein B (gB) contains a strongly immunodominant CD8(+) T cell epitope (gB(498-505)) that is recognized by 50% of both the CD8(+) effector T cells in acutely infected trigeminal ganglia (TG) and the CD8(+) memory T cells in latently infected TG. Of 376 predicted HSV-1 CD8(+) T cell epitopes in C57BL/6 mice, 19 (gB(498-505) and 18 subdominant epitopes) stimulated CD8(+) T cells in the spleens and TG of HSV-1 acutely infected mice. These 19 epitopes identified virtually all CD8(+) T cells in the infected TG that represent all or the vast majority of the HSV-specific CD8(+) TCR repertoire. Only 11 of ~84 HSV-1 proteins are recognized by CD8(+) T cells, and most (~80%) are expressed before viral DNA synthesis. Neither the immunodominance of gB(498-505) nor the dominance hierarchy of the subdominant epitopes is due solely to MHC or TCR affinity. We conclude that the vast majority of CD8(+) T cells in HSV-1 acutely infected TG are HSV specific, that HSV-1 β and γ1 proteins that are expressed before viral DNA synthesis are favored targets of CD8(+) T cells, and that dominance within the TCR repertoire is likely due to the frequency or expansion and survival characteristics of CD8(+) T cell precursors.  相似文献   

9.
Distinct functional CD8+ T-cell populations have been observed during human immunodeficiency virus (HIV) infection. One of these functions is the inhibition of viral replication by a noncytotoxic mechanism, which was shown to be mediated by the CD8+CD28+ subpopulation. On the other hand, CD8+ T cells exert an HIV-specific cytotoxic activity. The present study shows that CD8+CD28- lymphocytes display this HIV-specific cytotoxic activity, which is detectable immediately after the cells are purified from peripheral blood. The CD28- population is also able to proliferate and to retain its cytotoxic activity after in vitro restimulation with autologous blast cells. Finally, HIV-specific cytotoxic T cells can be obtained in vitro from the CD8+CD28+ population.  相似文献   

10.
Toka FN  Suvas S  Rouse BT 《Journal of virology》2004,78(23):13082-13089
It has become evident that naturally occurring CD25(+) regulatory T cells (T(reg) cells) not only influence self-antigen specific immune response but also dampen foreign antigen specific immunity. This report extends our previous findings by demonstrating that immunity to certain herpes simplex virus (HSV) vaccines is significantly elevated and more effective if T(reg) cell response is curtailed during either primary or recall immunization. The data presented here show that removal of CD25(+) T(reg) cells prior to SSIEFARL-CpG or gB-DNA immunization significantly enhanced the resultant CD8(+) T-cell response to the immunodominant SSIEFARL peptide. The enhanced CD8(+) T-cell reactivity in T(reg) cell-depleted animals was between two- and threefold and evident in both acute and memory stages. Interestingly, removal of CD25(+) T(reg) cells during the memory recall response to plasmid immunization resulted in a twofold increase in CD8(+) T-cell memory pool. Moreover, in the challenge experiments, memory CD8(+) T cells generated with plasmid DNA in the absence of T(reg) cells cleared the virus more effectively compared with control groups. We conclude that CD25(+) T(reg) cells quantitatively as well as qualitatively affect the memory CD8(+) T-cell response generated by gB-DNA vaccination against HSV. However, it remains to be seen if all types of vaccines against HSV are similarly affected by CD25(+) T(reg) cells and if it is possible to devise means of limiting T(reg) cell activity to enhance vaccine efficacy.  相似文献   

11.
Circulating CD8+ CD28- T cells were found to be expanded more in patients with ankylosing spondylitis than in an age-matched healthy population (41.2 ± 17.7% versus 18.6 ± 7.6%). The level of CD8+CD28- T cells was dependent on the disease status, but was independent of age. Most of the CD8+ CD28- T cells produced perforin after stimulation in vitro, in contrast to their CD8+CD28+ counterparts. From the clinical perspective, the percentage of the cytotoxic CD8+ CD28- T cells reflected a more severe course of disease, as it correlated with distinct movement restrictions, as well as the metrology score summarizing cervical rotation (in sitting position), chin-to-jugulum distance, thoracic Schober, chest expansion, and fingers-to-floor distance (P = 0.032).  相似文献   

12.
In an attempt to understand the mechanisms of immunodeficiency induced by human T lymphotropic virus type I (HTLV-I), HSV-specific CD4+ human multifunctional T cell clones were infected with HTLV-I in vitro. Early after HTLV-I infection, when their growth was still IL-2-dependent, clones were found to have almost completely lost their cytotoxic activity. At that time, their HSV-Ag-induced proliferative response and helper function for anti-HSV antibody production by B cells were only partially impaired. After this initial phase, the HTLV-I-infected clone became IL-2-independent, and the helper function was also completely lost. IL-2-dependent HTLV-I-infected clones showed degrees of proliferative response and elevation of intracellular free Ca2+ concentration induced by anti-CD3 mAb equivalent to those of HTLV-I-uninfected clones. On the other hand, during the IL-2-independent stage, expression of CD3-TCR complex on the cell surface was markedly decreased, and no significant elevation of intracellular free Ca2+ concentration was detected in response to anti-CD3 mAb. These data indicated that the loss of cytotoxic activity of HSV-specific T cell clones observed early after HTLV-I infection was not the result of impaired antigen recognition via the CD3-TCR complex, but might be due to dysfunction in the effector phase. On the other hand, the dysfunction of helper activity found late after HTLV-I infection might have mainly occurred in the recognition phase due to the decreased expression of CD3-TCR complex. The present data appear to suggest certain aspects of the pathogenesis of the immunodeficiency occurring in HTLV-I infection.  相似文献   

13.
Vaccinia virus-specific cytotoxic T-lymphocyte (CTL) clones were established from a healthy donor, who had been immunized with vaccinia virus vaccine, by stimulation of peripheral blood lymphocytes with UV-inactivated vaccinia virus antigen. The phenotype of all of the clones established was CD3+ CD4+ CD8- Leu11-. We used a panel of allogenic vaccinia virus-infected B-lymphoblastoid cell lines and demonstrated that some of the clones recognized vaccinia virus epitopes presented by human leukocyte antigen (HLA) class II molecules. Monoclonal antibodies specific for either HLA-DP or HLA-DR determinant reduced the cytotoxicity of specific clones. The HLA-restricted cytotoxicity of the clones is vaccinia virus specific, because vaccinia virus-infected but not influenza virus-infected autologous target cells were lysed. Using vaccinia virus deletion mutants, we found that some of the CTL clones recognize an epitope(s) that lies within the HindIII KF regions of the vaccinia virus genome. These results indicate that heterogeneous CD4+ CTL clones specific for vaccinia virus are induced in response to infection and may be important in recovery from and protection against poxvirus infections.  相似文献   

14.
15.
Chronic hepatitis C virus (HCV) infection is associated with impaired proliferative, cytokine, and cytotoxic effector functions of HCV-specific CD8(+) T cells that probably contribute significantly to viral persistence. Here, we investigated the potential role of T cells with a CD4(+)CD25(+) regulatory phenotype in suppressing virus-specific CD8(+) T-cell proliferation during chronic HCV infection. In vitro depletion studies and coculture experiments revealed that peptide specific proliferation as well as gamma interferon production of HCV-specific CD8(+) T cells were inhibited by CD4(+)CD25(+) T cells. This inhibition was dose dependent, required direct cell-cell contact, and was independent of interleukin-10 and transforming growth factor beta. Interestingly, the T-cell-mediated suppression in chronically HCV-infected patients was not restricted to HCV-specific CD8(+) T cells but also to influenza virus-specific CD8(+) T cells. Importantly, CD4(+)CD25(+) T cells from persons recovered from HCV infection and from healthy blood donors exhibited significantly less suppressor activity. Thus, the inhibition of virus-specific CD8(+) T-cell proliferation was enhanced in chronically HCV-infected patients. This was associated with a higher frequency of circulating CD4(+)CD25(+) cells observed in this patient group. Taken together, our results suggest that chronic HCV infection leads to the expansion of CD4(+)CD25(+) T cells that are able to suppress CD8(+) T-cell responses to different viral antigens. Our results further suggest that CD4(+)CD25(+) T cells may contribute to viral persistence in chronically HCV-infected patients and may be a target for immunotherapy of chronic hepatitis C.  相似文献   

16.
Herpes simplex virus (HSV) establishes a lifelong infection in humans. Reactivation of latent virus occurs intermittently so that the immune system is frequently exposed to viral Ag, providing an opportunity to evaluate memory T cells to a persistent human pathogen. We studied the persistence of genital herpes lesion-derived HSV-specific CD8+ CTL from three immunocompetent individuals with frequently recurring genital HSV-2 infection. All CTL clones were HSV-2 type specific and only one to three unique clonotypes were identified from any single biopsy specimen. The TCRBV genes utilized by these clonotypes were sequenced, and clonotype-specific probes were used to longitudinally track these clonotypes in PBMC and genital lesions. CTL clonotypes were consistently detected in PBMC and lesions for at least 2 and up to 7 years, and identical clonotypes infiltrated herpes lesions spaced as long as 7.5 years apart. Moreover, these clones were functionally lytic in vivo over these time periods. Additionally, CTL clones killed target cells infected with autologous viral isolates obtained 6.5 years after CTL clones were established, suggesting that selective pressure by these CTL did not result in the mutation of CTL epitopes. Thus, HSV recurs in the face of persistent CD8+ CTL with no evidence of clonal exhaustion or mutation of CTL epitopes as mechanisms of viral persistence.  相似文献   

17.
BACKGROUND: Although previous studies have reported important roles of CD4(+) type 1-helper T cells and regulatory T cells in Helicobacter-associated gastritis, the significance of CD8(+) cytotoxic T cells remains unknown. To study the roles of CD8(+) T cells, we examined the immune response in the gastric mucosa of Helicobacter felis-infected major histocompatibility complex (MHC) class II-deficient (II(-/-)) mice, which lack CD4(+) T cells. MATERIALS AND METHODS: Stomachs from H. felis-infected wild-type and infected MHC II(-/-) mice were examined histologically and immunohistochemically. Gastric acidity and serum levels of anti-H. felis antibodies were measured. The expression of pro-inflammatory and anti-inflammatory cytokine, Fas-ligand, perforin, and Foxp3 genes in the gastric mucosa was investigated. RESULTS: H. felis-infected MHC II(-/-) mice developed severe gastritis, accompanied by marked infiltration of CD8(+) cells. At 1 and 2 months after inoculation, mucosal inflammation and atrophy were more severe in MHC II(-/-) mice, although gastritis had reached similar advanced stages at 3 months after inoculation. There was little infiltration of CD4(+) cells, and no Foxp3-positive cells were detected in the gastric mucosa of the infected MHC II(-/-) mice. The expression of the interleukin-1beta and Fas-ligand genes was up regulated, but that of Foxp3 was down regulated in the infected MHC II(-/-) mice. Serum levels of anti-H. felis antibodies were lower in the infected MHC II(-/-) mice, despite severe gastritis. CONCLUSIONS: The present study suggests that cross-primed CD8(+) cytotoxic T cells can induce severe H.-associated gastritis in the absence of CD4(+) helper T cells and that Foxp3-positive cells may have an important role in the control of gastric inflammation.  相似文献   

18.
The identification of “asymptomatic” (i.e., protective) epitopes recognized by T cells from herpes simplex virus (HSV)-seropositive healthy individuals is a prerequisite for an effective vaccine. Using the PepScan epitope mapping strategy, a library of 179 potential peptide epitopes (15-mers overlapping by 10 amino acids) was identified from HSV type 1 (HSV-1) glycoprotein B (gB), an antigen that induces protective immunity in both animal models and humans. Eighteen groups (G1 to G18) of 10 adjacent peptides each were first screened for T-cell antigenicity in 38 HSV-1-seropositive but HSV-2-seronegative individuals. Individual peptides within the two immunodominant groups (i.e., G4 and G14) were further screened with T cells from HLA-DR-genotyped and clinically defined symptomatic (n = 10) and asymptomatic (n = 10) HSV-1-seropositive healthy individuals. Peptides gB161-175 and gB166-180 within G4 and gB661-675 within G14 recalled the strongest HLA-DR-dependent CD4+ T-cell proliferation and gamma interferon production. gB166-180, gB661-675, and gB666-680 elicited ex vivo CD4+ cytotoxic T cells (CTLs) that lysed autologous HSV-1- and vaccinia virus (expressing gB)-infected lymphoblastoid cell lines. Interestingly, gB166-180 and gB666-680 peptide epitopes were strongly recognized by CD4+ T cells from 10 of 10 asymptomatic patients but not by CD4+ T cells from 10 of 10 symptomatic patients (P < 0.0001; analysis of variance posttest). Inversely, CD4+ T cells from symptomatic patients preferentially recognized gB661-675 (P < 0.0001). Thus, we identified three previously unrecognized CD4+ CTL peptide epitopes in HSV-1 gB. Among these, gB166-180 and gB666-680 appear to be “asymptomatic” peptide epitopes and therefore should be considered in the design of future herpes vaccines.  相似文献   

19.
Purified peripheral blood T lymphocytes and the CD8-CD4+ and CD4-CD8+ T cell subsets, exhaustively depleted of APC have been studied for their capacity to respond to mAb directed against the CD3-Ti Ag-specific TCR complex and against the CD2 SRBCR. It is demonstrated that high affinity IL-2R can be readily induced by either anti-CD3 and/or anti-CD2 stimulation. However, IL-2 production can be observed only in the CD4+CD8- T cell subset. These results clearly contrast data obtained with purified CD4-CD8+ T cells, which are able to proliferate when the CD3-Ti complex is activated in the presence of APC. The data presented in the present study demonstrate that a simplified model for T cell activation and clonal expansion of the two major T cell subsets involve only the CD3-Ti complex and the CD2 Ag. Under conditions where the activation signals for the T cells are restricted only to the activation of CD3-Ti and CD2, the CD4+CD8- T cells respond with IL-2 production and expression of high affinity IL-2R, whereas the CD4-CD8+ T cell subset depends on exogenous IL-2 provided by the CD4+CD8- cells. These data do not, however, exclude an involvement of other cell-surface signals for regulation and control of T cell activation and T cell effector functions.  相似文献   

20.
Freshly isolated human peripheral blood monocytes and in vitro monocyte-derived macrophages were infected with HSV type 1 and used as target cells in a cell-mediated cytotoxicity assay. PBMC from both HSV-immune and non-immune donors were stimulated in vitro for 5 days with UV-inactivated HSV Ag and used as effector cells. Effectors from HSV-immune donors mediated virus-specific lysis of both monocyte and macrophage targets, whereas effectors from non-immune donors failed to mediate target cell lysis. Mean virus-specific lysis of autologous monocytes was (8.5 +/- (+/- 2.0)%) compared to a threefold greater virus-specific lysis of autologous macrophages (24.7 (+/- 4.3)%). More than 70% of this lysis was mediated by CD16- T lymphocytes. Further analysis demonstrated that the majority of the lysis against autologous and allogeneic targets was HLA-DR-restricted and mediated by CD4+ CTL. However, CD8+ CTL also contributed to the lysis of autologous targets as well as allogeneic targets having a common HLA-A and/or -B determinant. The HLA-restricted cytotoxicity was virus-specific as HSV-infected, but not CMV-infected, cells were lysed. CTL-mediated lysis of HSV-infected monocytes and macrophages may be of significance in the anti-viral and immunoregulatory host response.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号