首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We investigated element accumulation in vesicles of the arbuscular mycorrhizal (AM) fungus Glomus intraradices, extracted from the roots of inoculated leek plants. The elemental composition (elements heavier than Mg) was quantified using particle-induced X-ray emission (PIXE), in combination with scanning transmission ion microscopy (STIM). In vesicles, P was the most abundant of the elements analysed, followed by Ca, S, Si and K. We analysed 12 vesicles from two root systems and found that the variation between vesicles was particularly high for P and Si. The P content related positively to Si, Zn and K, while its relation to Cl fitted to a negative power function. Vesicle transects showed that P and K were present in central parts, while Ca was present mainly near the vesicle surfaces. The results showed that P is an important part (0.5% of the dry weight) of the vesicle content and that the distribution of some elements, within mycelia, may be strongly correlated.  相似文献   

2.
Highly managed turfgrass systems accumulate considerable soil organic C, which supports a diverse and robust soil microbial community. Degradation of this soil organic C is mediated by a suite of soil enzymes. The relationship between these enzyme activities and the quality of soil organic C is central to understanding the dynamics of soil organic matter. We examined the activities of several soil enzymes involved in microbial C acquisition, including β-glucosidase, N-acetyl-β-glucosaminidase, cellulase, chitinase, and phenol oxidase, and characterized the chemical composition of soil organic matter using Fourier transform infrared spectroscopy (FTIR) in a turfgrass chronosequence (1–95 years old) and adjacent native pines. Non-metric multidimensional scaling analysis showed that the chemical composition of soil organic matter varied with turf age and land use (turf versus pines). Using the polysaccharide peak (1,060 cm−1) as a reference, both aliphatic (2,930 cm−1) and carboxylic (1,650 and 1,380 cm−1) compounds increased with turf age, indicating that soil organic matter became more recalcitrant. Soil enzyme activities per unit soil mass increased with turf age and were correlated to soil C content. Most soil enzyme activities in native pines were similar to those in young turf, but the cellulase activity was similar to or greater than the activity in old turfgrass systems. On a soil C basis, however, the activities of N-acetyl-β-glucosaminidase and cellulase decreased with turf age; this reduction was correlated to the relative changes in the chemical composition of soil organic matter. We observed that the chemical composition of soil organic matter was significantly correlated with the enzyme activity profile when expressed per unit microbial biomass C, but not per unit soil organic C. Our results suggest that chemical composition of soil organic matter changes with turf age and this change partially determines the relative abundance of C-degrading soil enzymes, likely through the influence on microbial community composition.  相似文献   

3.
The abnormalities of metallochemical reactions may contribute to the pathogenesis of Amyotrophic Lateral Sclerosis (ALS). In the present work, an investigation of the elemental composition of the gray matter, nerve cells and white matter from spinal cord tissues representing three ALS cases and five non-ALS controls was performed. This was done with the use of the synchrotron microbeam X-ray fluorescence technique (micro-SRXRF). The following elements were detected in the tissue sections: P, S, Cl, K, Ca, Fe, Cu, Zn and Br. A higher accumulation of Cl, K, Ca, Zn and Br was observed in the nerve cell bodies than in the surrounding tissue. Contrary to all other elements, Zn accumulation was lower in the white matter areas than in the gray matter ones. The results of quantitative analysis showed that there were no general abnormalities in the elemental accumulation between the ALS and the control group. However, for individual ALS cases such abnormalities were observed for the nerve cells. We also demonstrated differences in the elemental accumulation between the analyzed ALS cases.  相似文献   

4.
5.
We investigated whether the capacities of Lolium perenne L. and Poa pratensis L. roots to proliferate locally and to alter local nitrogen (N) inflows in a decomposing organic matter patch were important in their capture of N when grown together. In the presence of a patch, plants of both species were significantly heavier and contained more N. Root length and weight densities increased in the patch, but specific root length was unaltered. Although both species proliferated roots in the patch, L. perenne produced greater root length densities than P. pratensis , and also captured more N from the patch. Indeed, total N uptake from the patch was related to root length density within the patch. N inflows (rate of N uptake per unit root length) in the patch were no faster than in the whole root system for both species. Under the conditions of this study, root proliferation in an organic patch was more important for N capture from the patch than alterations in N inflows. Local proliferation of roots may be a key factor in interspecific competition for non-uniformly distributed supplies of N in natural habitats, so resolving the previous uncertainty as to the 'adaptive' nature of root proliferation.  相似文献   

6.
Individual cells of Staurastrum planctonicum (Teil.) within a mixed freshwater phytoplankton sample were analyzed by scanning electron microscope X-ray microanalysis to determine their elemental composition. X-ray emission spectra routinely showed clear peaks of P, S, and Cl, plus monovalent (Na, K, and divalent (Mg, Ca) cations. Si and Cu were also present in lower quantities. Concentrations of individual elements (expressed as mmol.kg−1 dry weight) varied widely among cells, with values over the sample population approximating to a normal distribution. Although intracellular anion and cation levels varied considerably, significant correlations occurred between concentrations of monovalent and divalent cations (mean ratio 1.4), major diffusible anions and cations (mean ratio 1,2), and total levels of electropositive and electronegative elements (mean ratio 1.2). The monovalent cations of K and Na occurred at a mean ratio of 1.2 and were not significantly correlated. Concentrations of individual elements (except Si) showed clear positive correlations within the analyses, with 12 highly significant (99% probability) correlations out of 36 possible combinations. Principal factor analysis showed that elemental correlations were determined by two major factors, with two resulting groups of elements—(Na, S, Cl, Ca, Cu) and (Mg, P, K). Statistical relationships between elements followed a clear correlation pattern, which retained its characteristics even when elemental concentrations were expressed per unit P rather than per unit dry weight. Elemental concentrations were closely similar in matching, but not nonmatching, smicells. The statistical pattern of elemental associations noted in Staurastrum parallels that seen in X-ray micro-analytical studies of other algae but differs in detail. This pattern of statistical associations has biological implications in terms of cell compartmentation, characterization of different cell types, and cell interactions with their environment.  相似文献   

7.
Changes in the biochemical composition of isolated cell walls were analysed during the differentiation of coremia and rhizomorphs in Sphaerostilbe repens.Differentiation was accompanied by exclusively quantitative variations of the wall components: the content in carbohydrates, chitin and free amino sugars increased; on the contrary, amino acids, uronic acids, lipids and mineral substances decreased.Carbohydrates were composed of glucose, galactose and mannose; glucosamine was the main component of amino sugars. The predominant amino acid in the walls was cysteine the amount of which increased during hyphal aggregation, while quantities of the sixteen other determined amino acids decreased.Mineral matter was present in large quantities in the walls of the fungus, especially in vegetative mycelium. Iron, phosphorus and calcium were the most abundant elements.Possible relations between the variations in chemical composition of the wall and the capability of hyphae to aggregate are discussed.  相似文献   

8.
Solid-state (13)C nuclear magnetic resonance (NMR) and elemental analysis techniques were used to monitor the degradation of wheat bran by the white-rot fungus Pleurotus ostreatus during a 62-day cultivation period. The weight loss and in vitro organic matter digestibility of the substrate were also evaluated after fungal treatment. The (13)C NMR spectra of degraded wheat bran samples showed a lower content in carbohydrates and a higher content in aliphatic and carboxylic groups than the untreated control sample. In parallel, changes in the wheat bran elemental composition evidenced a decrease in carbon content and a concomitant increase in nitrogen and oxygen content during mycelium growth. These results clearly indicate the occurrence of progressive changes in the composition of wheat bran during fungal treatment and are interpreted in terms of preferential degradation of amorphous vs. crystalline polysaccharides by the fungal mycelium and accumulation of proteins in the substrate. At the end of the cultivation period, the treated samples experienced an average weight loss of 20% and an increase in organic matter digestibility of 17%.  相似文献   

9.
Patches of organic matter have been found to be important `hotspots' of denitrification in both surface and subsurface soils, but the factors controlling the formation and maintenance of these patches are not well established. We compared the concentration of patches of organic matter and root biomass in the subsurface (saturated zone) beneath poorly drained riparian wetland soils at four sites in Rhode Island, USA - two dominated by red maple (Acer rubrum) and two dominated by white pine (Pinus strobus). Denitrification enzyme activity (DEA) and carbon (C) content of patch material were compared between sites and between patches with different visual characteristics. Root decomposition was measured in an 8-week ex-situ incubation experiment that compared the effects of water content, root species, and soil matrix origin on CO2 evolution. We observed significantly greater concentrations of patches at 55 cm at one red maple site than all other sites. DEA and percent C in patches was generally higher in patches than matrix soil and did not vary between sites or by patch type. White pine roots decomposed at a faster rate than red maple roots under unsaturated conditions. Our results suggest that faster root decomposition could result in lower concentrations of patches of organic material in subsurface soils at sites dominated by white pine. Tree species composition and root decomposition may play a significant role in the formation of patches and the creation and maintenance of groundwater denitrification hotspots in the subsurface of riparian wetlands. Abbreviations: DEA – denitrification enzyme activity; DOC – dissolved organic carbon; PD – poorly drained; RM-1 – red maple-1 site; RM-2 – red maple-2 site; WP-1 – white pine-1 site; WP-2 – white pine-2 site.  相似文献   

10.
Summary The allelopathic effect of alfalfa (Medicago media Pers.) and red clover (Trifolium pratense L.) root saponins on winter wheat seedling growth and the fate of these chemicals in soil environments were studied. Seed germination, seedling and test fungus growth were suppressed by water and by alcohol extracts of alfalfa roots, and by crude saponins of alfalfa roots, indicating that medicagenic acid glycosides are the inhibitor. Powdered alfalfa roots inhibited wheat seedling growth when added to sand. At concentrations as low as 0.25% (w/w) the root system was completely destroyed whereas seedling shoots suffered little damage. Red clover roots caused some wheat growth inhibition when incorporated to sand, but their effect was much lower than in the alfalfa root treatment. Soil textures had a significant influence on the inhibitory effect of alfalfa roots. The inhibition of seedling growth was more pronounced on light than on heavy soils. This was attribted to the higher sorption of inhibitors by heavy soils. Incubation of alfalfa roots mixed into loose sand, coarse sand, loamy sand and clay loam for a period of 0–8 days resulted in decreased toxicity to bothT. viride and wheat seedlings. This decrease occurred more quickly in heavier soils than in loose sand, due to the hydrolysis of glycosides by soil microorganisms. Soil microbes were capable of detoxifying medicagenic acid glycosides by partial hydrolysis of sugar chain to aglycone. These findings illustrate the importance of medicagenic acid glycosides as an inhibitor of wheat seedling growth, and of their fate in different soil environments.  相似文献   

11.
Temporal and spatial variability in soil food web structure   总被引:4,自引:0,他引:4  
Matty P. Berg  Janne Bengtsson 《Oikos》2007,116(11):1789-1804
Heterogeneity is a prominent feature of most ecosystems. As a result of environmental heterogeneity the distribution of many soil organisms shows a temporal as well as horizontal and vertical spatial patterning. In spite of this, food webs are usually portrayed as static networks with highly aggregated trophic groups over broader scales of time and space. The variability in food web structure and its consequences have seldom been examined. Using data from a Scots pine forest soil in the Netherlands, we explored (1) the temporal and spatial variability of a detrital food web and its components, (2) the effect of taxonomic resolution on the perception of variability over time and across space, and (3) the importance of organic matter quality as an explanatory factor for variability in food web composition. Compositional variability, expressed using the Bray‐Curtis similarity index, was measured over 2.5 years using a stratified litterbag design with three organic horizons per litterbag set. Variability in community composition and organic matter degradation increased over time in the litter horizon only. Seasonal variation in community composition was larger than variation between samples from the same season in different years. Horizontal spatial variability in community composition and organic matter degradation was relatively low, with no increase in variability with increasing distance between samples. Vertically, communities and organic matter degradation was more different between the non‐adjacent litter and humus horizons than between adjacent layers. These findings imply that soil food webs, at least in temperate forest plantations, are more variable than is currently appreciated in experiments and model studies, and that organic matter turnover might be an important factor explaining variability in community composition. Species composition was more variable than functional group composition, which implies that aggregated food webs will seem less sensitive to local temporal and spatial changes than they in fact are.  相似文献   

12.
Ectomycorrhizal fungi (EM) that associate with tree roots in a symbiotic relationship may be crucial in mediating tree health in urban environments, but research on the effects of urbanization on EM communities is very limited so far. Here, we compared EM communities of adult pedunculate oaks (Quercus robur) between urban and forest environments, and assessed the effect of soil sealing around the trees on their EM community composition and EM diversity. We sampled 32 oak individuals across 4 sampling classes (Street, Lane, Park and Forest), and we characterized their EM communities using 454 amplicon pyrosequencing. The EM communities were not nested but they were significantly different between all sampling classes, with a very strong community differentiation between forest and urban trees. There were indications that EM richness declined with increasing sealed soil surface, with a significant effect of sampling class on estimated EM richness and diversity. We also identified indicator EM of the different sampling classes. The most important soil factor affecting EM community composition was pH, followed by plant available phosphorus, total nitrogen content and organic matter. Our results may have important implications when developing EM inocula for managing tree health in urban environments.  相似文献   

13.
The distribution of ectomycorrhizas on Dryas octopetala L in grass heaths of the 450 km2 karst region known as the Burren in Western Ireland was examined in relation to soil factors and vegetation type. Ectomycorrhizas were identified or characterised from 56 soil cores from 30 sites, and the occurrence of each ectomycorrhizal (EM) type was quantified by estimating the total length of mycorrhizal tips of each type. Soil organic matter, total nitrogen, extractable phosphorus, pH and depth were the soil factors determined. In total, 24 EM types were recorded. The EM community of Dryas roots was significantly more species-rich in one vegetation type—Hyperico-Dryadetum—than in others (Arctostaphylo-Dryadetum or Asperulo-Seslerietum). Multiple linear regression analyses indicated that soil organic matter and soil depth explained a significant portion of the variation in EM abundance, while soil organic matter and extractable phosphorus explained a significant portion of the variation in EM diversity. Canonical correspondence analysis showed that some individual EM types (e.g. Craterellus lutescens, Cenococcum geophilum, Tomentella sp., Boletus sp.) exhibited distinct soil preferences, most markedly in relation to soil organic matter, which, in this analysis, was the main significant soil variable distinguishing the three vegetation types.  相似文献   

14.
The elemental composition of strawberry plants (Fragaria ananassa cv. Macarena) inoculated with the plant growth‐promoting bacterium Azospirillum brasilense REC3, and non‐inoculated controls, was studied using scanning electron microscopy (SEM) and energy dispersive X‐ray (EDS) analysis. This allowed simultaneous semi‐quantification of different elements in a small, solid sample. Plants were inoculated and grown hydroponically in 50% or 100% Hoagland solution, corresponding to limited or optimum nutrient medium, respectively. Bacteria‐inoculated plants increased the growth index 45% and 80% compared to controls when grown in 100% and 50% Hoagland solution, respectively. Thus, inoculation with A. brasilense REC3 in a nutrient‐limited medium had the strongest effect in terms of increasing both shoot and root biomass and growth index, as already described for Azospirillum inoculated into nutrient‐poor soils. SEM‐EDS spectra and maps showed the elemental composition and relative distribution of nutrients in strawberry tissues. Leaves contained C, O, N, Na, P, K, Ca and Cu, while roots also had Si and Cl. The organic fraction (C, O and N) accounted for over 96.3% of the total chemical composition; of the mineral fraction, Na had higher accumulation in both leaves and roots. Azospirillum‐inoculated and control plants had similar elemental quantities; however, in bacteria‐inoculated roots, P was significantly increased (34.33%), which constitutes a major benefit for plant nutrition, while Cu content decreased (35.16%).  相似文献   

15.
Heterotrophic microbial decomposers, such as bacteria and fungi, immobilize or mineralize inorganic elements, depending on their elemental composition and that of their organic resource. This fact has major implications for their interactions with other consumers of inorganic elements. We combine the stoichiometric and resource-ratio approaches in a model describing the use by decomposers of an organic and an inorganic resource containing the same essential element, to study its consequences on decomposer interactions and their role in elemental cycling. Our model considers the elemental composition of organic matter and the principle of its homeostasis explicitly. New predictions emerge, in particular, (1) stoichiometric constraints generate a trade-off between the R* values of decomposers for the two resources; (2) they create favorable conditions for the coexistence of decomposers limited by different resources and with different elemental demands; (3) however, combined with conditions on species-specific equilibrium limitation, they draw decomposers toward colimitation by the organic and inorganic resources on an evolutionary time scale. Moreover, we derive the conditions under which decomposers switch from consumption to excretion of the inorganic resource. We expect our predictions to be useful in explaining the community structure of decomposers and their interactions with other consumers of inorganic resources, particularly primary producers.  相似文献   

16.
Jakucs E  Eros-Honti Z 《Mycorrhiza》2008,18(6-7):277-285
Over the last two decades, much information has been gathered on the ectomycorrhizal fungus community composition of plant associations of boreal, temperate, and tropical regions. Worldwide, Tomentella ectomycorrhizas (ECM) are often common and dominant in the mycorrhizosphere of coniferous and deciduous forests. They are present under different environmental conditions and associate with diverse plant hosts. Tomentella sporocarps, however, are rarely found aboveground, so Tomentella species are often missing from fungus community studies based on fruit-body presence. Tomentella is a resupinate genus of Thelephoraceae (Basidiomycota) forming black-brown, brown, yellow, or ochre ECM on the roots of gymnosperm and angiosperm trees, distinguished by typical morphological-anatomical characteristics (clamped hyphae, angular mantle, surface network, special rhizomorphs and cystidia). In this paper, we review the taxonomic position and morphological-anatomical characteristics of Tomentella ECM. A short summary of the microscopic features used for distinguishing tomentelloids during morphotyping and identification is presented in order to support molecular and ecological studies of ectomycorrhizal fungus communities.  相似文献   

17.
甘肃省民勤沙区土壤结皮理化性质研究   总被引:39,自引:6,他引:39  
以甘肃民勤沙区为研究区域 ,分别采集了不同地貌部位和不同植被类型下的土壤结皮 ,并对其理化性质进行了初步分析。从结皮土壤的机械组成、土壤盐分、土壤养分、土壤阳离子交换量等方面来看 ,丘间地状况都明显要优于灌丛沙包。这可能与丘间地地形低洼 ,有利于土壤物质汇聚 ,以及其接受的大气降尘远较灌丛沙包为多有关。对于灌丛沙包来讲 ,白刺沙包在理化性质上 ,其状况要优于红柳结皮和梭梭结皮 ,这主要与其对环境的适应性及其所处的演替阶段有关。从目前的植被演替情况来看 ,白刺是当地的顶极种群 ,最适应环境 ,因此结皮发育状况也好 ;红柳目前已经处于极度退化进程中 ,而梭梭为人工植被 ,人工植被因在演替阶段中不起决定作用 ,故理化性质较差。另外从该研究工作还可以看出 ,对白刺植被采取围封措施之后 ,可以显著地促进结皮的生长发育 ,提高结皮中的有机质、全 N、全 P、速效 N等养分以及 Ca CO3含量。  相似文献   

18.
Shrub abundance is expected to increase with enhanced temperature and nutrient availability in the Arctic, and associated changes in abundance of ectomycorrhizal (EM) fungi could be a key link between plant responses and longer-term changes in soil organic matter storage. This study quantifies the response in EM fungal abundance to long-term warming and fertilization in two arctic ecosystems with contrasting responses of the EM shrub Betula nana. Ergosterol was used as a biomarker for living fungal biomass in roots and organic soil and ingrowth bags were used to estimate EM mycelial production. We measured 15N and 13C natural abundance to identify the EM-saprotrophic divide in fungal sporocarps and to validate the EM origin of mycelia in the ingrowth bags. Fungal biomass in soil and EM mycelial production increased with fertilization at both tundra sites, and with warming at one site. This was caused partly by increased dominance of EM plants and partly by stimulation of EM mycelial growth. We conclude that cycling of carbon and nitrogen through EM fungi will increase when strongly nutrient-limited arctic ecosystems are exposed to a warmer and more nutrient-rich environment. This has potential consequences for below-ground litter quality and quantity, and for accumulation of organic matter in arctic soils.  相似文献   

19.
1. Two experiments in the Experimental Lakes Area (ELA) in north-western Ontario, Canada examined the effects of light and two key elements on the net accumulation and elemental composition of epilithon. In Lake (L) 224, benthic algae were grown under different light intensity and phosphorus supply, while in L302S we provided three levels of two different carbon sources (bicarbonate and glucose) to algae colonizing nutrient-diffusing substrata. After 1 month of accumulation, we sampled biofilms for chlorophyll (chl), carbon (C), phosphorus (P) and algal C.
2. Increased C supply did not significantly affect algal growth (C or chl) or elemental composition (C/P ratios) in L302S. However, P enrichment increased chl and algal C, dramatically reduced the C/P ratio of epilithon, and did not affect total organic C in L224. Phosphorus enrichment also increased the proportion of algal material in the total particulate organic matter and altered the taxonomic composition of algae in L224 biofilms. Shading had no significant effect on the C/P ratio and total organic C in epilithon from the L224 experiment.
3. Our results demonstrate that P supply affects the elemental composition of organic matter that collects on rock substrata. It thus appears that low availability of P relative to C and light drives the formation and retention of high C/P organic matter on rock surfaces in oligotrophic boreal lakes.  相似文献   

20.
We investigated element accumulation in the arbuscular mycorrhizal fungus Glomus intraradices. Fungal spores and mycelia growing in monoxenic cultures were analyzed. The elemental composition was quantified using particle-induced X-ray emission (PIXE) in combination with scanning transmission ion microscopy. In the spores, Ca and Fe were associated mainly with the spore wall, while P and K showed patchy distributions and their concentrations were correlated. Excess of P in the hyphal growth medium increased the P and Si concentrations in spores and increased the K/Ca ratio in spores. Increased P availability decreased the concentration of Zn and Mn in spores. We concluded that the availability of P influences the uptake and accumulation of several elements in spores. It is demonstrated that PIXE analysis is a powerful tool for quantitative analysis of elemental accumulation in fungal mycelia.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号