首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 296 毫秒
1.
An enantioselective HPLC method for the simultaneous determination of the concentration of the enantiomers of the oxcarbazepine metabolites 10-hydroxycarbazepine (MHD) and carbamazepine-10,11-trans-dihydrodiol (DHD) in human urine is described. The method is based on extraction with tert.-butylmethyl ether–dichloromethane (2:1, v/v) under alkaline conditions, separation and evaporation of the organic phase and dissolution of the residue in the mobile phase. Enantiomers are resolved on a Diacel Chiralcel OD column (250 mm×4.6 mm I.D.) under isocratic conditions using as mobile phase n-hexane–ethanol–2-propanol (18:2:1, v/v/v) with addition of glacial acetic acid (0.1%). The enantiomers are detected by UV at 215 nm. The method allows reliable determination of the MHD and DHD enantiomers in human urine with limits of quantification of 0.2 mg/l and 0.4 mg/l, respectively.  相似文献   

2.
Two human urinary metabolites of the industrial solvent N,N-dimethylformamide (DMF), N-hydroxymethyl-N-methylformamide (HMMF) and N-acetyl-S-(N-methylcarbamoyl)cysteine (AMCC), were assayed using a new analytical method (gas chromatography and thermionic sensitive detection). Clean-up of urine samples includes a liquid–liquid extraction step followed by a solid-phase extraction step to separate HMMF and AMCC from other urine components. During clean-up, AMCC is converted into ethyl-N-methylcarbamate (EMC), and during gas chromatography, HMMF is degraded in the injector to N-methylformamide (NMF). All the validation data necessary for a quantitative procedure are given. The method was applied to urine samples from workers exposed to DMF and from the general population. The results were confirmed by mass spectrometric determination. For this purpose a further liquid–liquid extraction step was introduced in the clean-up procedure. Background levels of AMCC in the general population were identified.  相似文献   

3.
An HPLC method has been developed for the separation and the determination of caffeine and its metabolites in urine samples using a one extraction–analysis run and UV detection. The compounds were extracted by liquid–liquid extraction using chloroform–isopropylalcohol (85:15, v/v). Chromatographic separation was accomplished on an ODS analytical column with a mobile phase containing 0.05% acetic acid/methylalcohol (92.5:7.5, v/v). Compounds were monitored at 280 nm. The method was validated for the determination of AFMU, 1X, 1U, 17X and 17U caffeine metabolites required to assess the metabolic activity of the enzymes subject to in vivo caffeine testing. The validated assay was applied to urine samples from ten healthy volunteers. The method was proved to be suitable to assess simultaneously the enzymatic activity of cytochrome P450 CYP1A2 and CYP2A6, as well as N-acetyltransferase and xanthine oxidase.  相似文献   

4.
A stereoselective high-performance liquid chromatographic method for the determination of the enantiomers of ketamine and its active metabolite, norketamine, in human plasma is described. The compounds were extracted from plasma by liquid–liquid extraction three times in a combination of cyclohexane with 2.5 M NaOH, 1 mM HCl and 1 M carbonate buffer. Stereoselective separation was achieved on a Chiralcel OD column with a mobile phase of n-hexane–2-propanol (98:2, v/v). The detection wavelength was 215 nm. The lower limits of the determination of the method were 5 ng/ml for ketamine and 10 ng/ml for norketamine. The intra- and inter-day coefficients of variation ranged from 2.9 to 9.8% and from 3.4 to 10.7% for all compounds, respectively. The method was sensitive and sufficiently reproducible for stereoselective monitoring of ketamine and norketamine in human plasma during pharmacokinetic studies after the administration of ketamine for analgesia.  相似文献   

5.
Liquid chromatographic methods are described for the determination of a new effective anti-hypertensive drug candesartan (CV-11974), its prodrug candesartan cilexetil (TCV-116) and a metabolite, CV-15959 in human plasma and urine. The assays comprise liquid–liquid extraction and separation on a phenyl column with fluorometric detection. The methods give absolute recoveries of 70, 83 and 78% for candesartan cilexetil, candesartan and CV-15959, respectively, and the limit of quantification is 5, 1 and 3 nM of plasma (RSD<20%), respectively. The methods were applied to plasma and urine samples from biopharmaceutical and clinical studies in man.  相似文献   

6.
Liquid–liquid (using dichloromethane) and liquid–solid extraction processes (using disposable C18 cartridges) were applied to human urine samples spiked with 15 androgenic anabolic steroids (natural and synthetic). The extraction recoveries were assessed from different HPLC separations of anabolic steroids using water–acetonitrile mobile phase, and using calibration graphs obtained by injection into HPLC of standard samples of these compounds before and after extraction. The procedures, including sample preconcentration, showed extraction efficiencies over 90% which were independent on a wide range of concentrations tested. Solid phase extraction yielded poor results for oximetolone, danazol and dehydroepiandrosterone. For real urine samples, hydrolysis using β-glucuronidase and washing using sodium hydroxide before and after solvent extraction, respectively, is recommended.  相似文献   

7.
A high-performance liquid chromatographic method for the determination of picotamide in human plasma and urine is described. After addition of an internal standard (bamifylline), the plasma and urine samples were subjected to liquid—liquid extraction and clean-up procedures. The final extracts were evaporated to dryness and the resulting residues were reconstituted in 100 μl of methanol—water (50:50, v/v) and chromatographed on a LiChrosorb RP-SELECT B reversed-phase column coupled to an ultraviolet detector monitored at 230 nm. Chromatographic analysis takes about 10 min per sample. The assay was linear over a wide range and has a limit of detection of 0.005 and 0.1 μg/ml in plasma and urine, respectively. It was selective for picotamide, accurate and robust and thus suitable for routine assays after therapeutic doses of picotamide.  相似文献   

8.
The first method using high-performance liquid chromatography (HPLC) has been developed for the determination of trans-resveratrol in human plasma. The method involves a liquid–liquid extraction followed by reversed-phase HPLC with UV detection. The detection limit of trans-resveratrol in human plasma was 5.0 ng/ml. Standard curves are linear over the concentration range of 5.0–5000.0 ng/ml. Intra-assay variability ranged from 1.9 to 3.7% and inter-assay variability ranged from 2.5 to 4.0% at the concentration range of 15.0–4000.0 ng/ml.  相似文献   

9.
A gas chromatographic–mass spectrometric method was developed for the enantioselective analysis of levetiracetam and its enantiomer (R)-α-ethyl-2-oxo-pyrrolidine acetamide in dog plasma and urine. A solid-phase extraction procedure was followed by gas chromatographic separation of the enantiomers on a chiral cyclodextrin capillary column and detection using ion trap mass spectrometry. The fragmentation pattern of the enantiomers was further investigated using tandem mass spectrometry. For quantitative analysis three single ions were selected from the enantiomers, enabling selected ion monitoring in detection. The calibration curves were linear from 1 μM to 2 mM for plasma samples and from 0.5 mM to 38 mM for urine samples. In plasma and urine samples the inter-day precision, expressed as relative standard deviation was around 10% in all concentrations. Selected ion monitoring mass spectrometry is suitable for quantitative analysis of a wide concentration range of levetiracetam and its enantiomer in biological samples. The method was successfully applied to a pharmacokinetic study of levetiracetam and (R)-α-ethyl-2-oxo-pyrrolidine acetamide in a dog.  相似文献   

10.
A rapid and sensitive method for the extraction and quantification of penicillin-G and procaine in horse urine and plasma samples has been successfully developed. The method involves the use of solid-phase extraction (SPE) for penicillin-G, liquid–liquid extraction (LLE) for procaine, and high-performance liquid chromatography (HPLC) for the quantification of penicillin-G and procaine. The new method described here has been successfully applied in the pharmacokinetic studies of procaine, penicillin-G and procaine–penicillin-G administrations in the horse.  相似文献   

11.
A simple procedure for the determination of cotinine, major metabolite of nicotine in urine, is described. The assay involved a liquid–liquid extraction with dichloromethane in alkaline environment. The extract was dried at ambient temperature under a gentle stream of nitrogen. The residue was dissolved in 300 μl of mobile phase and 30 μl aliquot was injected via an automatic sampler into the liquid chromatograph and eluted with the mobile phase (10–9%, v/v methanol and acetonitrile, respectively in potassium dihydrogenphosphate buffer adjusted to pH 3.4) at a flow rate of 1 ml/min on a C8 Symmetry cartridge column (5 μm, 150 mm×3.9 mm, Waters) at 25°C. The eluate was detected at 260 nm. Internal standard was 2-phenylimidazole. Sensitive and specific, this technique was performed to test urine of diabetic patients (smokers and non-smokers) admitted in an endocrinology service. Urinary cotinine seems to be a better marker of smoking status than thiocyanates.  相似文献   

12.
A simple and selective procedure for the determination of vinorelbine, a new semi-synthetic vinca alkaloid, is presented. The method is based on ion-exchange high-performance liquid chromatography on normal-phase silica with fluorescence detection, combined with liquid—liquid extraction using diethyl ether for sample clean-up. The absence of endogenous interferences and the excellent chromatographic behaviour of vinca alkaloids provides accurate results even at low concentrations. The limit of determination in plasma is 1.5 μg/l (500-μl sample). Reproducible recoveries in urine were obtained if 10–50 μl of sample were processed supplemented with 500 μl of blank plasma.  相似文献   

13.
Urinary metabolic ratios of caffeine are used in humans to assess the enzymatic activities of cytochrome P450 isoenzyme 1A2 (CYP1A2), xanthine oxidase (XO) and for phenotyping individuals for the bimodal N-acetyltransferase 2 (NAT2), all of them involved in the activation or detoxification of various xenobiotic compounds. Most reported analytical procedures for the measurement of the urinary metabolites of caffeine include a liquid–liquid extraction of urine samples prior to their analysis by reversed-phase HPLC. At neutral to basic pH however, 5-acetylamino-6-formylamino-3-methyluracil (AFMU), a metabolite of caffeine, spontaneously decomposes to 5-acetylamino-6-amino-3-methyluracil (AAMU). Since AAMU is not extracted in most organic solvents, the extent of AFMU decomposition cannot be precisely assessed. Although the decomposition reaction can be minimized by immediate acidification of the urine, accurate results can only be obtained when both AAMU and AFMU are monitored, or alternatively, if AAMU is measured after complete transformation of AFMU into AAMU in basic conditions. We report a liquid chromatographic method for the simultaneous quantitative analysis of the five urinary metabolites of caffeine used for the CYP1A2, XO and NAT2 phenotyping studies: AAMU, AFMU, 1-methylxanthine, 1-methyluric acid and 1,7-dimethyluric acid. These metabolites are satisfactory separated from all other known caffeine metabolites as well as endogenous urinary constituents. Sample treatment does not require any liquid–liquid extraction procedure. Urine samples are diluted and centrifuged before being injected (10 μl) onto a YMC-Pack Polyamine II (250×4.6 mm) column. A step-wise gradient elution program is applied using acetonitrile–0.75% (v/v) formic acid: (91:9) at 0 min→(75:25) at 25 min→(65:35) at 35 min→(65:35) at 45 min, followed by a re-equilibration step to the initial solvent composition. The flow-rate is 1.0 ml/min and the separations are monitored by UV absorbance at 260 and 280 nm. The procedure described here represents a substantial improvement over previous methods: a single analysis and a minimal urine sample treatment enables the simultaneous quantitation of five caffeine metabolites, notably AFMU and AAMU, used for the determination of CYP450 1A2, XO and NAT2 enzyme activity. Importantly enough, phenotyping individuals for the bimodal NAT2 is made possible without the uncertainty associated with the deformylation of AFMU, which is likely to happen at all steps prior to the analysis, during sample storage and even in the bladder of the subjects.  相似文献   

14.
A sensitive capillary electrophoretic method for the determination of carvedilol enantiomers in 100 μl of human plasma has been developed and validated. Carvedilol and the internal standard carazolol are isolated from plasma samples by liquid–liquid extraction using diethylether. A sensitive and selective detection is provided by helium–cadmium laser-induced fluorescence. The total analysis time is 17.5 min, about 30 min are needed for the sample preparation. The linearity of the assay ranges from 1.56 to 50 ng/ml per carvedilol enantiomer. The limits of quantification (LOQ) for the carvedilol enantiomers in 100 μl of human plasma are 1.56 ng/ml. The inter-day accuracy for R-carvedilol is between 95.8 and 103% (104% at LOQ) and for S-carvedilol between 97.1 and 103% (107% at LOQ); the inter-day precision values are between 3.81 and 8.64% (10.9% at LOQ) and between 5.47 and 7.86% (7.91% at LOQ) for R- and S-carvedilol, respectively. The small sample volume needed is especially advantageous for the application in clinical studies in pediatric patients. As an application of the assay concentration/time profiles of the carvedilol enantiomers in a 5-year-old patient receiving a test dose of 0.09 mg/kg carvedilol are reported.  相似文献   

15.
A sensitive reversed-phase high-performance liquid chromatographic method has been developed and validated for the quantitative determination of docetaxel (I) in human plasma. The concentrations in plasma, for validation procedures spiked with known amounts of I, are read from calibration curves in the range of 10–20 000 ng/ml. The sample preparation involved a liquid–liquid extraction of 1000 μl of sample with a mixture of acetonitrile–n-butylchloride (1:4, v/v). The related compound paclitaxel (II) was used as internal standard. Chromatographic separations were performed an Inertsil ODS-80A column, with UV detection performed at 230 nm. The overall extraction recoveries were 84.3 and 90.0% for I and II, respectively. The lower limit of quantitation was 10 ng/ml, and the accuracy, within-run and between-run precisions at three tested concentrations fell within the generally accepted criteria for bioanalytical assays.  相似文献   

16.
A sensitive and specific high-performance liquid chromatographic method with fluorescence detection (excitation wavelength: 280 nm; emission wavelength: 360 nm) was developed and validated for the determination of vinorelbine in plasma and blood samples. The sample pretreatment procedure involved two liquid–liquid extraction steps. Vinblastine served as the internal standard. The system uses a Spherisorb cyano analytical column (250×4.6 mm I.D.) packed with 5 μm diameter particles as the stationary phase and a mobile phase of acetonitrile–80 mM ammonium acetate (50:50, v/v) adjusted to pH 2.5 with hydrochloric acid. The assay showed linearity from 1 to 100 ng/ml in plasma and from 2.5 to 100 ng/ml in blood. The limits of quantitation were 1 ng/ml and 2.5 ng/ml, respectively. Precision expressed as RSD was in the range 3.9 to 20% (limit of quantitation). Accuracy ranged from 92 to 120%. Extraction recoveries from plasma and blood averaged 101 and 75%, respectively. This method was used to follow the time course of the concentration of vinorelbine in human plasma and blood samples after a 10-min infusion period of 20 mg/m2 of this drug in patients with metastatic cancer.  相似文献   

17.
A rapid, selective and sensitive HPLC–tandem mass spectrometry method was developed and validated for simultaneous determination of flupirtine and its active metabolite D-13223 in human plasma. The analytes and internal standard diphenhydramine were extracted from plasma samples by liquid–liquid extraction, and chromatographed on a C18 column. The mobile phase consisted of acetonitrile–water–formic acid (60:40:1, v/v/v), at a flow rate of 0.5 ml/min. Detection was performed on a triple quadrupole tandem mass spectrometer by selected reaction monitoring (SRM) mode via atmospheric pressure chemical ionization (APCI). The method has a limit of quantitation of 10 ng/ml for flupirtine and 2 ng/ml for D-13223, using 0.5-ml plasma sample. The linear calibration curves were obtained in the concentration range of 10.0–1500.0 ng/ml for flupirtine and 2.0–300.0 ng/ml for D-13223. The intra- and inter-run precision (RSD), calculated from quality control (QC) samples was less than 7.2% for flupirtine and D-13223. The accuracy as determined from QC samples was less than 5% for the analytes. The overall extraction recoveries of flupirtine and D-13223 were determined to be about 66% and 78% on average, respectively. The method was applied for the evaluation of the pharmacokinetics of flupirtine and active metabolite D-13223 in volunteers following peroral administration.  相似文献   

18.
An isocratic high-performance liquid chromatography (HPLC) method with ultraviolet detection for the simultaneous determination of clozapine and its two major metabolites in human plasma is described. Analytes are concentrated from alkaline plasma by liquid–liquid extraction with n-hexane–isoamyl alcohol (75:25, v/v). The organic phase is back-extracted with 150 μl of 0.1 M dibasic phosphate (pH 2.2 with 25% H3PO4). Triprolidine is used as internal standard. For the chromatographic separation the mobile phase consisted of acetonitrile–0.06 M phosphate buffer, pH 2.7 with 25% phosphoric acid (48:52, v/v). Analytes are eluted at a flow-rate of 1.0 ml/min, separated on a 250×4.60 mm I.D. analytical column packed with 5 μm C6 silica particles, and measured by UV absorbance detection at 254 nm. The separation requires 7 min. Calibration curves for the three analytes are linear within the clinical concentration range. Mean recoveries were 92.7% for clozapine, 82.0% for desmethylclozapine and 70.4% for clozapine N-oxide. C.V. values for intra- and inter-day variabilities were ≤13.8% at concentrations between 50 and 1000 ng/ml. Accuracy, expressed as percentage error, ranged from −19.8 to 2.8%. The method was specific and sensitive with quantitation limits of 2 ng/ml for both clozapine and desmethylclozapine and 5 ng/ml for clozapine N-oxide. Among various psychotropic drugs and their metabolites, only 2-hydroxydesipramine caused significant interference. The method is applicable to pharmacokinetic studies and therapeutic drug monitoring.  相似文献   

19.
A high-performance liquid chromatographic method with electrochemical detection has been developed for the simultaneous determination of epirubicin, 13-S-dihydroepirubicin, doxorubicin and 13-S-dihydrodoxorubicin in human plasma. An aliquot of 200 μl plasma, spiked with internal standard, was extracted by solid-phase extraction using polymeric adsorbent columns. Chromatography was performed using a C18 reversed-phase column with a mobile phase consisting of water–acetonitrile (71:29, v/v) containing 0.05 M Na2HPO4 and 0.05% v/v triethylamine adjusted to pH 4.6 with citric acid. Linearity of the method was obtained in the concentration range of 1–500 ng/ml for all the analytes. Analytical recoveries of the analytes ranged from 89 to 93%. The assay can be used for the simultaneous determination of the four analytes, or for epirubicin and its metabolite or doxorubicin and its metabolite, using the other parent drug as an internal standard. The method was applied to analyze human plasma samples from patients treated with epirubicin using doxorubicin as an internal standard.  相似文献   

20.
Sensitive methods for the determination of ochratoxin A in urine and faeces of swine are described. The samples were extracted with chloroform at pH <2, and the extracts were cleaned up by a combination of solid-phase extraction and liquid—liquid partition. High-performance liquid chromatography with fluorescence detection was used for detection and determination. The detection limits were 0.3 ng/ml for urine and 1.5 ng/g for faeces. Recoveries of ochratoxin A from spiked samples of urine and faeces were 93% and 60%, respectively. Because of the low detection limit and the fast and relatively easy performance, the method for the determination of ochratoxin A in urine proved suitable for the estimation of possible contamination of live animals.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号