首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Bax-dependent regulation of Bak by voltage-dependent anion channel 2   总被引:4,自引:0,他引:4  
Many studies have demonstrated a critical role of Bax in mediating apoptosis, but the role of Bak in regulating cancer cell apoptotic sensitivities in the presence or absence of Bax remains incompletely understood. Using isogenic cells with defined genetic deficiencies, here we show that in response to intrinsic, extrinsic, and endoplasmic reticulum stress stimuli, HCT116 cells show clear-cut apoptotic sensitivities in the order of Bax+/Bak+ > Bax+/Bak- > Bax-/Bak+ > Bax-/Bak-. Small interference RNA-mediated knockdown of Bak in Bax-deficient cells renders HCT116 cells completely resistant to apoptosis induction. Surprisingly, however, Bak knockdown in Bax-expressing cells only slightly affects the apoptotic sensitivities. Bak, like Bax, undergoes the N terminus exposure upon apoptotic stimulation in both Bax-expressing and Bax-deficient cells. Gel filtration, chemical cross-linking, and co-immunoprecipitation experiments reveal that different from Bax, which normally exists as monomers in unstimulated cells and is oligomerized by apoptotic stimulation, most Bak in unstimulated HCT116 cells exists in two distinct protein complexes, one of which contains voltage-dependent anion channel (VDAC) 2. During apoptosis, Bak and Bax form both homo- and hetero-oligomeric complexes that still retain some VDAC-2. However, the oligomeric VDAC-2 complexes are diminished, and Bak does not interact with VDAC-2 in Bax-deficient HCT116 cells. These results highlight VDAC-2 as a critical inhibitor of Bak-mediated apoptotic responses.  相似文献   

2.
3.
The B cell lymphoma WEHI-231 has been used as a model to study immature B cell tolerance, based on its capacity to undergo growth arrest and programmed cell death on B cell receptor (BCR) cross-linking. Using this model to identify the molecular mechanisms underlying these processes, we found that BCR cross-linking results in the selective activation of caspase 7/Mch3, but not of the other two members of the CPP32 family, caspase 2/Nedd2 and caspase 3/CPP32. This was evidenced by the induction of proteolytic activity against the substrate for the CPP32 subfamily of caspases (z-DVED-AMC) in vitro, as well as PARP proteolysis in vivo and by the processing of the 35 kDa Mch3 into a 32 kDa species, which was later further proteolyzed. The general caspase inhibitor z-VAD-fmk, but not the CPP32 family inhibitor Ac-DEVD-CHO, blocked anti- micro-induced apoptosis, indicating that a caspase not belonging to the CPP32-like family is also implicated in anti- micro-triggered apoptosis. In contrast, z-VAD-fmk was not able to counteract growth arrest induced by anti- micro treatment, suggesting that caspase activation is not necessary for induction of growth arrest. Neither of the inhibitors prevented Mch3 processing; however, z-VAD-fmk prevented proteolysis of the p32 subunit, suggesting that further processing of this subunit is associated with apoptosis. Bcl-2 overexpression prevented anti- micro induction of CPP32-like activity and apoptosis, and blocked further processing of the Mch3 p32 subunit. In contrast, CD40 stimulation completely blocked the appearance of the p32 subunit in addition to blocking CPP32-like activity and apoptosis induced by BCR cross-linking. Moreover, only CD40 stimulation was able to prevent anti- micro-induced growth arrest, which was correlated with inhibition of retinoblastoma and of cyclin A down-regulation. In splenic B cells, Mch3 is also specifically proteolyzed ex vivo after induction of apoptosis by BCR cross-linking, demonstrating the specific involvement of caspase-7/Mch3 in apoptosis induced in B cell tolerance.  相似文献   

4.
It has been shown that excess stress to the endoplasmic reticulum (ER) triggers apoptosis, but the mechanisms underlying these processes remain unclear. We and others have reported previously that DR5 expression is up-regulated in thapsigargin (THG)-treated human cancer cells. Here, we provide evidence that CHOP is involved in THG up-regulation of DR5, which is a critical step for ER stress-induced apoptosis in human cancer cells. In human colon cancer HCT116 cells, knockdown of DR5 by siRNA blocked THG-induced Bax conformational change along with caspase-3 activation and cell death. Moreover, inhibition of CHOP expression attenuated DR5 up-regulation and apoptosis induced by THG, whereas ectopic expression of DR5 restored the sensitivity of CHOP siRNA-transfected cells to THG-induced apoptosis. In addition to HCT116 cells, inhibition of CHOP or DR5 induction also attenuated THG-induced cell death in other cancer cell lines including LNCaP, A2780S, and DU145, indicating that CHOP and DR5 are critical for ER stress-mediated apoptosis in human carcinoma cells. Furthermore, we identified a potential CHOP-binding site in the 5'-flanking region of the DR5 gene. Mutation of this site abrogated the enhanced reporter activity in response to THG treatment. Together, our findings suggest that CHOP regulates ER stress-induced apoptosis, at least in part, through enhancing DR5 expression in some types of human cancer cells.  相似文献   

5.
Drug resistance to 5-fluorouracil (5-FU) is still a major limitation to its clinical use. In addition, the clinical value of p53 as a predictive marker for 5-FU-based chemotherapy remains a matter of debate. Here, we used HCT116 human colorectal cancer cells expressing wild-type p53 and investigated whether inhibition of Fas expression by interference RNA modulates 5-FU-induced apoptosis. Cells were treated with 5-FU (1, 4 or 8 microM) for 8-48 h. Cell viability was evaluated by trypan blue dye exclusion. Apoptosis was assessed by changes in nuclear morphology and caspase activity. The interference RNA technology was used to silence Fas expression. Caspase activation, p53, Fas, cytochrome c, and Bcl-2 family protein expression was evaluated by immunoblotting. 5-FU was cytotoxic in HCT116 cells (p<0.001). Nuclear fragmentation and caspase-3, -8 and -9 activities were also markedly increased in HCT116 cells after 5-FU (p<0.001). In addition, wild-type p53 and Fas expression were 25- and 4-fold increased (p<0.05). Notably, when interference RNA was used to inhibit Fas, 5-FU-mediated nuclear fragmentation and caspase activity were markedly reduced in HCT116 cells. Finally, western blot analysis of mitochondrial extracts from HCT116 cells exposed to 5-FU showed a 6-fold increase in Bax, together with a 3-fold decrease in cytochrome c (p<0.001). In conclusion, 5-FU exerts its cytotoxic effects, in part, through a p53/Fas-dependent apoptotic pathway that involves Bax translocation and mitochondrial permeabilization.  相似文献   

6.
The goal of cancer chemotherapy to induce multi-directional apoptosis as targeting a single pathway is unable to decrease all the downstream effect arises from crosstalk. Present study reports that Withanolide D (WithaD), a steroidal lactone isolated from Withania somnifera, induced cellular apoptosis in which mitochondria and p53 were intricately involved. In MOLT-3 and HCT116p53+/+ cells, WithaD induced crosstalk between intrinsic and extrinsic signaling through Bid, whereas in K562 and HCT116p53-/- cells, only intrinsic pathway was activated where Bid remain unaltered. WithaD showed pronounced activation of p53 in cancer cells. Moreover, lowered apoptogenic effect of HCT116p53-/- over HCT116p53+/+ established a strong correlation between WithaD-mediated apoptosis and p53. WithaD induced Bax and Bak upregulation in HCT116p53+/+, whereas increase only Bak expression in HCT116p53-/- cells, which was coordinated with augmented p53 expression. p53 inhibition substantially reduced Bax level and failed to inhibit Bak upregulation in HCT116p53+/+ cells confirming p53-dependent Bax and p53-independent Bak activation. Additionally, in HCT116p53+/+ cells, combined loss of Bax and Bak (HCT116Bax-Bak-) reduced WithaD-induced apoptosis and completely blocked cytochrome c release whereas single loss of Bax or Bak (HCT116Bax-Bak+/HCT116Bax+Bak-) was only marginally effective after WithaD treatment. In HCT116p53-/- cells, though Bax translocation to mitochondria was abrogated, Bak oligomerization helped the cells to release cytochrome c even before the disruption of mitochondrial membrane potential. WithaD also showed in vitro growth-inhibitory activity against an array of p53 wild type and null cancer cells and K562 xenograft in vivo. Taken together, WithaD elicited apoptosis in malignant cells through Bax/Bak dependent pathway in p53-wild type cells, whereas Bak compensated against loss of Bax in p53-null cells.  相似文献   

7.
Short chain fatty acids (SCFA), principally butyrate, propionate, and acetate, are produced in the gut through the fermentation of dietary fiber by the colonic microbiotica. Butyrate in particular is the preferred energy source for the cells in the colonic mucosa and has been demonstrated to induce apoptosis in colorectal cancer cell lines. We have used proteomics, specifically 2D-DIGE and mass spectrometry, to identify proteins involved in butyrate-induced apoptosis in HCT116 cells and also to identify proteins involved in the development of butyrate insensitivity in its derivative, the HCT116-BR cells. The HCT116-BR cell line was characterized as being less responsive to the apoptotic effects of butyrate in comparison to its parent cell line. Our analysis has revealed that butyrate likely induces a cellular stress response in HCT116 cells characterized by p38 MAPK activation and an endoplasmic reticulum (ER) stress response, resulting in caspase 3/7 activation and cell death. Adaptive cellular responses to stress-induced apoptosis in HCT116-BR cells may be responsible for the development of resistance to apoptosis in this cell line. We also report for the first time additional cellular processes altered by butyrate, such as heme biosynthesis and dysregulated expression of nuclear lamina proteins, which may be involved in the apoptotic response observed in these cell lines.  相似文献   

8.
p21(WAF1) appears to be a major determinant of the cell fate in response to anticancer therapy. It was shown previously that HCT116 human colon cancer cells growing in vitro enter a stable arrest upon DNA damage, whereas cells with a defective p21(WAF1) response undergo apoptosis. Here we report that the enhanced sensitivity of HCT116/p21(-/-) cells to chemotherapeutic drug-induced apoptosis correlates with an increased expression of p53 and a modification of their Bax/Bcl-2 ratio in favor of the pro-apoptotic protein Bax. Treatment of HCT116/p21(-/-) cells with daunomycin resulted in a reduction of the mitochondrial membrane potential and in activation of caspase-9, whereas no such changes were observed in HCT116/p21(+/+) cells, providing evidence that p21(WAF1) exerts an antagonistic effect on the mitochondrial pathway of apoptosis. Moreover, the role of p53 in activation of this pathway was demonstrated by the fact that inhibition of p53 activity by pifithrin-alpha reduced the sensitivity of HCT116/p21(-/-) cells to daunomycin-induced apoptosis and restored a Bax/Bcl-2 ratio similar to that observed in HCT116p21(+/+) cells. Enhancement of p53 expression after disruption of p21(WAF1) resulted from a stabilization of p53, which correlated with an increased expression of the tumor suppressor p14(ARF), an inhibitor of the ubiquitin ligase activity of Mdm2. In accordance with the role of p14(ARF) in p53 stabilization, overexpression of p14(ARF) in HCT116/p21(+/+) cells resulted in a strong increase in p53 activity. Our results identify a novel mechanism for the anti-apoptotic effect of p21(WAF1) consisting in maintenance of mitochondrial homeostasis that occurs in consequence of a negative control of p14(ARF) expression.  相似文献   

9.
Colorectal cancer (CRC) is a common disease with high mortality and morbidity. Annexin A3 (ANXA3) belongs to the structurally homologous family of Ca2+ and phospholipid-binding proteins. This study aimed to investigate the effects and potential mechanisms of ANXA3 on oxaliplatin (Ox) resistance in CRC. We generated two human CRC cell lines (HCT116/Ox and SW480/Ox) with acquired Ox resistance and determined their resistance properties. ANXA3 expression and cell apoptosis, migration and invasion also were evaluated. We found that cell viability of HCT116/Ox and SW480/Ox was higher than that in parental cells in the presence of Ox. ANXA3 was highly expressed in HCT116/Ox and SW480/Ox cells. ANXA3 downregulation diminished cell survival, migration and invasion, while increased the apoptosis of HCT116 and SW480 with or without Ox. Moreover, depletion of ANXA3 reduced cell viability and BrdU incorporation, increased cell apoptosis and c-caspase 3 expression in HCT116/Ox with or without Ox. A transwell assay determined that knockdown of ANXA3 impeded the migration and invasion of HCT116/Ox and SW480/Ox cells. Additionally, phosphorylation of extracellular signal–regulated kinase (ERK) and c-Jun N-terminal kinase (JNK) decreased upon ANXA3 depletion in HCT116/Ox cells, and ANXA3 silencing suppressed Ox-induced activation of ERK and JNK signaling pathway. ANXA3 downregulation reduced Ox resistance in CRC, and treatment with the ERK inhibitor PD098059 or JNK inhibitor SP600125 contributed to this process. These results indicate that silencing ANXA3 could overcome Ox resistance in CRC via the mitogen-activated protein kinase signaling pathway.  相似文献   

10.
A new cochlioquinone derivative, cochlioquinone F ( 1 ), as well as three known compounds, anhydrocochlioquinone A ( 2 ), isocochlioquinone A ( 3 ), and isocochlioquinone C ( 4 ), were isolated from the PDB (potato dextrose broth) culture of the phytopathogenic fungus Bipolaris luttrellii. The structure of 1 was elucidated on the basis of NMR techniques. The apoptosis‐inducing effects of compounds 1 – 4 were evaluated against HCT116 cancer cells. Compound 2 exhibited the strongest activity in inducing apoptosis on HCT116 cells within the range of 10–30 μM . In addition, the caspase activation, the release of cytochrome c from mitochondria, and the downregulation of Bcl‐2 protein in HCT116 cells treated with compound 2 were detected.  相似文献   

11.
12.
p53 triggers apoptosis in response to cellular stress. We analyzed p53-dependent gene and protein expression in response to hypoxia using wild-type p53-carrying or p53 null HCT116 colon carcinoma cells. Hypoxia induced p53 protein levels and p53-dependent apoptosis in these cells. cDNA microarray analysis revealed that only a limited number of genes were regulated by p53 upon hypoxia. Most classical p53 target genes were not upregulated. However, we found that Fas/CD95 was significantly induced in response to hypoxia in a p53-dependent manner, along with several novel p53 target genes including ANXA1, DDIT3/GADD153 (CHOP), SEL1L and SMURF1. Disruption of Fas/CD95 signalling using anti-Fas-blocking antibody or a caspase 8 inhibitor abrogated p53-induced apoptosis in response to hypoxia. We conclude that hypoxia triggers a p53-dependent gene expression pattern distinct from that induced by other stress agents and that Fas/CD95 is a critical regulator of p53-dependent apoptosis upon hypoxia.  相似文献   

13.
Non-ionizing radiation produced by nanosecond pulsed electric fields (nsPEFs) is an alternative to ionizing radiation for cancer treatment. NsPEFs are high power, low energy (non-thermal) pulses that, unlike plasma membrane electroporation, modulate intracellular structures and functions. To determine functions for p53 in nsPEF-induced apoptosis, HCT116p53+/+ and HCT116p53−/− colon carcinoma cells were exposed to multiple pulses of 60 kV/cm with either 60 ns or 300 ns durations and analyzed for apoptotic markers. Several apoptosis markers were observed including cell shrinkage and increased percentages of cells positive for cytochrome c, active caspases, fragmented DNA, and Bax, but not Bcl-2. Unlike nsPEF-induced apoptosis in Jurkat cells (Beebe et al. 2003a) active caspases were observed before increases in cytochrome c, which occurred in the presence and absence of Bax. Cell shrinkage occurred only in cells with increased levels of Bax or cytochrome c. NsPEFs induced apoptosis equally in HCT116p53+/+ and HCT116p53−/− cells. These results demonstrate that non-ionizing radiation produced by nsPEFs can act as a non-ligand agonist with therapeutic potential to induce apoptosis utilizing mitochondrial-independent mechanisms in HCT116 cells that lead to caspase activation and cell death in the presence or absence of p-53 and Bax. This work was supported by the U.S. Air Force Office of Scientific Research/DOD MURI grant on Subcellular Responses to Narrow Band and Wide Band Radio Frequency Radiation, administered by Old Dominion University, and the American Cancer Society.  相似文献   

14.
15.

Background

In an effort to achieve better cancer therapies, we elucidated the combination cancer therapy of STI571 (an inhibitor of Bcr-Abl and clinically used for chronic myelogenous leukemia) and TNF-related apoptosis-inducing ligand (TRAIL, a developing antitumor agent) in leukemia, colon, and prostate cancer cells.

Methods

Colon cancer (HCT116, SW480), prostate cancer (PC3, LNCaP) and leukemia (K562) cells were treated with STI571 and TRAIL. Cell viability was determined by MTT assay and sub-G1 appearance. Protein expression and kinase phosphorylation were determined by Western blotting. c-Abl and p73 activities were inhibited by target-specific small interfering (si)RNA. In vitro kinase assay of c-Abl was conducted using CRK as a substrate.

Results

We found that STI571 exerts opposite effects on the antitumor activity of TRAIL. It enhanced cytotoxicity in TRAIL-treated K562 leukemia cells and reduced TRAIL-induced apoptosis in HCT116 and SW480 colon cancer cells, while having no effect on PC3 and LNCaP cells. In colon and prostate cancer cells, TRAIL caused c-Abl cleavage to the active form via a caspase pathway. Interestingly, JNK and p38 MAPK inhibitors effectively blocked TRAIL-induced toxicity in the colon, but not in prostate cancer cells. Next, we found that STI571 could attenuate TRAIL-induced c-Abl, JNK and p38 activation in HCT116 cells. In addition, siRNA targeting knockdown of c-Abl and p73 also reduced TRAIL-induced cytotoxicity, rendering HCT116 cells less responsive to stress kinase activation, and masking the cytoprotective effect of STI571.

Conclusions

All together we demonstrate a novel mediator role of p73 in activating the stress kinases p38 and JNK in the classical apoptotic pathway of TRAIL. TRAIL via caspase-dependent action can sequentially activate c-Abl, p73, and stress kinases, which contribute to apoptosis in colon cancer cells. Through the inhibition of c-Abl-mediated apoptotic p73 signaling, STI571 reduces the antitumor activity of TRAIL in colon cancer cells. Our results raise additional concerns when developing combination cancer therapy with TRAIL and STI571 in the future.  相似文献   

16.
Aurora kinases are mitotic serine/threonine protein kinases and are attractive novel targets for anticancer therapy. Many small-molecule inhibitors of Aurora kinases are currently undergoing clinical trials. Aurora A kinase is essential for successful mitotic transition. MK8745 is a novel and selective small-molecule inhibitor of Aurora A kinase. MK8745 induced apoptotic cell death in a p53-dependent manner when tested in vitro in cell lines of multiple lineages. Cells expressing wild-type p53 showed a short delay in mitosis followed by cytokinesis, resulting in 2N cells along with apoptosis. However, cells lacking or with mutant p53 resulted in a prolonged arrest in mitosis followed by endoreduplication and polyploidy. Cytokinesis was completely inhibited in p53-deficient cells, as observed by the absence of 2N cell population. The induction of apoptosis in p53-proficient cells was associated with activation of caspase 3 and release of cytochrome c but was independent of p21. Exposure of p53 wild-type cells to MK8745 resulted in the induction of p53 phosphorylation (ser15) and an increase in p53 protein expression. p53-dependent apoptosis by MK8745 was further confirmed in HCT 116 p53-/- cells transfected with wild-type p53. Transient knockdown of Aurora A by specific siRNA recapitulated these p53- dependent effects, with greater percent induction of apoptosis in p53 wild-type cells. In conclusion, our studies show p53 as a determining factor for induction of apoptosis vs. polyploidy upon inhibition of Aurora A.  相似文献   

17.
We have shown that protein kinase CKII (CKII) inhibition induces senescence through the p53-dependent pathway in HCT116 cells. Here we examined the molecular mechanism through which CKII inhibition activates p53 in HCT116 cells. CKII inhibition by treatment with CKII inhibitor or CKIIα small-interfering RNA (siRNA) increased intracellular hydrogen peroxide and superoxide anion levels. These effects were significantly blocked by pretreatment of cells with the antioxidant N-acetylcysteine. Additionally, NADPH oxidase (NOX) inhibitor apocynin and p22phox siRNA significantly reduced p53 expression and suppressed the appearance of senescence markers. CKII inhibition did not affect mitochondrial superoxide generation. These data demonstrate that CKII inhibition induces superoxide anion generation via NOX activation, and subsequent superoxide-dependent activation of p53 acts as a mediator of senescence in HCT116 cells after down-regulation of CKII.  相似文献   

18.
Previous studies have indicated that stimulation of neuronal inhibitory receptors, such as the serotonin1A receptor (5-HT1A-R), could cause attenuation of the activity of both N-type Ca2+ channels and N-methyl-D-aspartic acid receptors, thus resulting in protection of neurons against excitotoxicity. The purpose of this study was to investigate if the 5-HT1A-R is also coupled to an alternative pathway that culminates in suppression of apoptosis even in cells that are deficient in Ca2+ channels. Using a hippocampal neuron-derived cell line (HN2-5) that is Ca2+ channel-deficient, we demonstrate here that an alternative pathway is responsible for 5-HT1A-R-mediated protection of these cells from anoxia-triggered apoptosis, assessed by deoxynucleotidyl-transferase-mediated dUTP nick end-labeling (TUNEL). The 5-HT1A-R agonist-evoked protection was eliminated in the presence of pertussis toxin and also required phosphorylation-mediated activation of mitogen-activated protein kinase (MAPK), as evidenced by the elimination of the agonist-elicited rescue of neuronal cells by the MAPK kinase inhibitor PD98059 but not by the phosphatidylinositol 3-kinase (PI-3K) inhibitor wortmannin. Furthermore, agonist stimulation of the 5-HT1A-R caused a 60% inhibition of anoxia-stimulated caspase 3-like activity in the HN2-5 cells, and this inhibition was abrogated by PD98059 but not by wortmannin. Although agonist stimulation of the 5-HT1A-R caused an activation of PI-3Kgamma in HN2-5 cells, our results showed that this PI-3Kgamma activity was not linked to the 5-HT1A-R-promoted regulation of caspase activity and suppression of apoptosis. Thus, in the neuronal HN2-5 cells, agonist binding to the 5-HT1A-R results in MAPK-mediated inhibition of a caspase 3-like enzyme and a 60-70% suppression of anoxia-induced apoptosis through a Ca2+ channel-independent pathway.  相似文献   

19.
20.
Protein N-terminal acetylation is an abundant post-translational modification in eukaryotes implicated in various fundamental cellular and biochemical processes. This modification is catalysed by evolutionarily conserved N-terminal acetyltransferases (NATs) whose deregulation has been linked to cancer development and thus, are emerging as useful diagnostic and therapeutic targets. Naa40 is a highly selective NAT that acetylates the amino-termini of histones H4 and H2A and acts as a sensor of cell growth in yeast. In the present study, we examine the role of Naa40 in cancer cell survival. We demonstrate that depletion of Naa40 in HCT116 and HT-29 colorectal cancer cells decreases cell survival by enhancing apoptosis, whereas Naa40 reduction in non-cancerous mouse embryonic fibroblasts has no effect on cell viability. Specifically, Naa40 knockdown in colon cancer cells activates the mitochondrial caspase-9-mediated apoptotic cascade. Consistent with this, we show that caspase-9 activation is required for the induced apoptosis because treatment of cells with an irreversible caspase-9 inhibitor impedes apoptosis when Naa40 is depleted. Furthermore, the effect of Naa40-depletion on cell-death is mediated through a p53-independent mechanism since p53-null HCT116 cells still undergo apoptosis upon reduction of the acetyltransferase. Altogether, these findings reveal an anti-apoptotic role for Naa40 and exhibit its potential as a therapeutic target in colorectal cancers.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号