首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 9 毫秒
1.
J M Denu  P F Fitzpatrick 《Biochemistry》1992,31(35):8207-8215
Primary deuterium kinetic isotope and pH effects on the reduction of D-amino acid oxidase by amino acid substrates were determined using steady-state and rapid reaction methods. With D-serine as substrate, reduction of the enzyme-bound FAD requires that a group with a pKa value of 8.7 be unprotonated and that a group with a pKa value of 10.7 be protonated. The DV/Kser value of 4.5 is pH-independent, establishing that these pKa values are intrinsic. The limiting rate of reduction of the enzyme shows a kinetic isotope effect of 4.75, consistent with this as the intrinsic value. At high enzyme concentration (approximately 15 microM) at pH 9,D-serine is slightly sticky (k3/k2 = 0.8), consistent with a decrease in the rate of substrate dissociation. With D-alanine as substrate, the pKa values are perturbed to 8.1 and 11.5. The DV/Kala value increases from 1.3 at pH 9.5 to 5.1 at pH 4, establishing that D-alanine is sticky with a forward commitment of approximately 10. The effect of pH on the DV/Kala value is consistent with a model in which exchange with solvent of the proton from the group with pKa 8.7 is hindered and is catalyzed by H2O and OH- above pH 7 and by H3O+ and H2O below pH 7. With glycine, the pH optimum is shifted to a more basic value, 10.3. The DV/Kgly value increases from 1.26 at pH 6.5 to 3.1 at pH 10.7, consistent with fully reversible CH bond cleavage followed by a pH-dependent step. At pH 10.5, the kinetic isotope effect on the limiting rate of reduction is 3.4.  相似文献   

2.
Tilocca A  Gamba A  Vanoni MA  Fois E 《Biochemistry》2002,41(48):14111-14121
Large-scale Car-Parrinello molecular dynamics simulations of D-alanine oxidation catalyzed by the flavoenzyme D-amino acid oxidase have been carried out. A model of the enzyme active site was built by starting from the enzyme X-ray structure, and by testing different subsystems comprising different sets of aminoacyl residues. In this process, the stability of the enzyme-substrate complex was taken as a measure of the accuracy of the model. The activated transfer of the amino acid alpha-hydrogen from the substrate to the flavin N5 position was then induced by constraining a suitable transfer reaction coordinate, and the free energy profile of the reaction was calculated. The evolution of electronic and structural properties of both enzyme-bound substrate and flavin cofactor along the reaction path is consistent with a hydride-transfer mechanism. The calculated free energy barrier for this process (13 kcal/mol) is in excellent agreement with the activation energy value derived from the experimentally determined rate constant for the corresponding enzyme-catalyzed reaction. The electronic distribution of the reduced flavin shows that the transferred electrons tend to be centered near the C4a position rather than delocalized over the flavin pyrimidine ring. This feature is mechanistically relevant in that such an electronic distribution may promote the subsequent enzyme-catalyzed reduction of molecular oxygen to yield hydrogen peroxide via a postulated flavin 4a-peroxide intermediate. These results also show that a first-principles molecular dynamics approach is suitable to study the mechanism of complex enzymatic processes, provided that a smaller, yet reliable, subsystem of the enzyme can be identified, and special computational techniques are employed to enhance the sampling of the reactive event.  相似文献   

3.
Trigonelline, i.e., N-methylnicotinate, which has a zwitterionic structure similar to a substrate D-amino acid, is a useful active site probe for D-amino acid oxidase (DAO). The affinity of trigonelline for DAO in the deprotonated state at the enzyme bound FAD 3-imino group is higher than in the neutral state, contrary to in the case of benzoate, which is a competitive inhibitor and is in a monoanionic form. The time course of the absorbance change was monitored for the binding of DAO with trigonelline by means of a stopped-flow technique. The reaction, on monitoring at 507 nm, was found to be biphasic at pH 8.3, with fast and slow phases. The dissociation of the 3-imino proton of the enzyme bound FAD was observed in the same time course as the slow phase. These results suggest that the positive charge of trigonelline exists near the 3-imino group of the enzyme bound FAD and interacts repulsively with the proton of the 3-imino group. The absorption spectra of the DAO-trigonelline complex at various pHs also support this hypothesis. In the catalysis of DAO, a similar mechanism may be involved, that is, the positive charge of a D-amino acid may interact repulsively with the 3-imino proton of the enzyme bound FAD, and this interaction may be important for the catalysis.  相似文献   

4.
Old and very recent experiments on the extent and the rate of proton release during the four reaction steps of photosynthetic water oxidation are reviewed. Proton release is discussed in terms of three main sources, namely the chemical production upon electron abstraction from water, protolytic reactions of Mn-ligands (e.g. oxo-bridges), and electrostatic response of neighboring amino acids. The extent of proton release differs between the four oxidation steps and greatly varies as a function of pH both, but differently, in thylakoids and PS II-membranes. Contrastingly, it is about constant in PS II-core particles. In any preparation, and on most if not all reaction steps, a large portion of proton transfer can occur very rapidly (<20 s) and before the oxidation of the Mn-cluster by Yz + is completed. By these electrostatically driven reactions the catalytic center accumulates bases. An additional slow phase is observed during the oxygen evolving step, S3S4S0. Depending on pH, this phase consists of a release or an uptake of protons which accounts for the balance between the number of preformed bases and the four chemically produced protons. These data are compatible with the hypothesis of concerted electron/proton-transfer to overcome the kinetic and energetic constraints of water oxidation.Abbreviations BBY-membranes Photosystem II-enriched membrane fragments prepared after Berthold, Babcock and Yocum (1981) - BSA bovine serum albumin - Chl chlorophyll - CAB-protein chlorophyll a/b-binding protein - core particles oxygen evolving reaction center core particles of Photosystem II - Cyt cytochrome - DCBQ 2,5-dichloro-p-benzoquinone - IML intermittent light - P-680 primary electron donor of Photosystem II - PS II Photosystem II - Yz tyrosine residue on the D1 polypeptide, electron carrier between manganese and P-680 - photochemical reaction   相似文献   

5.
6.
D-Amino acid oxidase (DAAO) has been proposed to be involved in the oxidation of D-serine, an allosteric activator of the NMDA-type glutamate receptor in the brain, and to be associated with the onset of schizophrenia. The recombinant human DAAO was expressed in Escherichia coli and was isolated as an active homodimeric flavoenzyme. It shows the properties of the dehydrogenase-oxidase class of flavoproteins, possesses a low kinetic efficiency, and follows a ternary complex (sequential) kinetic mechanism. In contrast to the other known DAAOs, the human enzyme is a stable homodimer even in the apoprotein form and weakly binds the cofactor in the free form.  相似文献   

7.
8.
9.
10.
1. Activity of D-amino acid oxidase was detected in tissue extract of mouse liver by two sensitive spectrophotometric methods. 2. The activity was also detectable in extracts of the heart, but not of lung.  相似文献   

11.
Several substrates and roles have been proposed for D-amino acid oxidase (E.C. 1.4.3.3.); however, there is no proof that they possess the required characteristics to account for the ubiquity, large amounts and great activity of the enzyme as found in diverse cells and tissues. Based on the similar stereoposition of identically charged atoms and lateral side chain (R) with respect to the alpha-hydrogen atoms in beta-sheet conformation and in D-amino acids, it is proposed that its substrates may include several membrane-related proteins, partially in beta-sheet conformation, whose alpha-hydrogen atoms would be the real object of D-amino acid oxidase catalysis. A monooxygenase-like enzymatic activity of D-amino acid oxidase with these novel substrates is considered, for which the final products are hypothesized to be protein alpha-carbon hydroxyls resulting from the incorporation of one atom of oxygen into the substrate, the other being reduced to water. Alternatively, it is also proposed that D-amino acid oxidase (and possibly other monooxygenase enzymes) would have a hydroperoxide-synthetase activity. In this case, protein alpha-carbon hydroperoxide and not water, but another reduced molecule, would be the final products. The new enzymatic performances of D-amino acid oxidase and the possible role of its potential final products in redox and other biochemical processes are discussed.  相似文献   

12.
1. An appreciable amount of D-amino acid oxidase was found in the extract of mouse liver by enzyme-linked immunosorbent assay (ELISA). 2. The content of the enzyme in the kidney and heart extracts was also measured by the assay.  相似文献   

13.
14.
15.
The extracellular flavocytochrome cellobiose dehydrogenase (CDH; EC ) participates in lignocellulose degradation by white-rot fungi with a proposed role in the early events of wood degradation. The complete hemoflavoenzyme consists of a catalytically active dehydrogenase fragment (DH(cdh)) connected to a b-type cytochrome domain via a linker peptide. In the reductive half-reaction, DH(cdh) catalyzes the oxidation of cellobiose to yield cellobiono-1,5-lactone. The active site of DH(cdh) is structurally similar to that of glucose oxidase and cholesterol oxidase, with a conserved histidine residue positioned at the re face of the flavin ring close to the N5 atom. The mechanisms of oxidation in glucose oxidase and cholesterol oxidase are still poorly understood, partly because of lack of experimental structure data or difficulties in interpreting existing data for enzyme-ligand complexes. Here we report the crystal structure of the Phanerochaete chrysosporium DH(cdh) with a bound inhibitor, cellobiono-1,5-lactam, at 1.8-A resolution. The distance between the lactam C1 and the flavin N5 is only 2.9 A, implying that in an approximately planar transition state, the maximum distance for the axial 1-hydrogen to travel for covalent addition to N5 is 0.8-0.9 A. The lactam O1 interacts intimately with the side chains of His-689 and Asn-732. Our data lend substantial structural support to a reaction mechanism where His-689 acts as a general base by abstracting the O1 hydroxyl proton in concert with transfer of the C1 hydrogen as hydride to the re face of the flavin N5.  相似文献   

16.
17.
The biosynthesis of a porcine kidney peroxisomal enzyme, D-amino acid oxidase (EC 1.4.3.3., DAO), was investigated. Pig kidney mRNA as well as free and membrane-bound polysomes were used to investigate in vitro protein synthesis using a rabbit reticulocyte lysate. mRNA and free polysomes, but not membrane-bound polysomes, directed the synthesis of DAO. To examine the in vivo synthesis of the enzyme, a pig kidney cell line (LLC-PK1) was biosynthetically labelled. Both the in vitro and in vivo synthesized DAO had the same molecular weight, 38,000, as that of the purified enzyme. These results indicate strongly that DAO is synthesized on free ribosomes and transferred to the interior of peroxisomes without any proteolytic modification.  相似文献   

18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号