首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A high-performance liquid chromatographic method was developed for the determination of a new proton pump inhibitor, YH1885 (I), in human plasma and urine, and rat blood and tissue homogenate using fenticonazole as an internal standard. The sample preparation was simple: a 2.5 volume of acetonitrile was added to the biological sample to deproteinize it. A 50-μl aliquot of the supernatant was injected onto a C8 reversed-phase column. The mobile phase employed was methanol-0.005 M tetrabutylammonium dihydrogenphosphate (77:23, v/v), and it was run at a flow-rate of 1.0 ml/min. The column effluent was monitored using an ultraviolet detector at 270 nm. The retention times for I and the internal standard were 9.0 and 10.3 min, respectively. The detection limits for I in human plasma and urine, and in rat tissue homogenate (including blood) were 50, 100 and 100 ng/ml, respectively. The coefficients of variation of the assay (within-day and between-day) were generally low (below 8.84%) for human plasma and urine, and for rat tissue homogenate. No interferences from endogenous substances were found.  相似文献   

2.
A simplified high-pressure liquid chromatographic method for determination of furose-mide in plasma and urine has been developed using a fluorometric detector directly coupled to the column effluent. The method includes an ether extraction from acidified biologic samples. The mobile phase used for chromatography on a reversed-phase column (C18 hydro-carbon permanently bonded to silica particles) is sufficiently acidic to induce fluorescence of furosemide. The methylester of furosemide is employed as an internal standard. The sensitivity is 0.1 and 0.25 μg per ml plasma and urine, respectively. The applicability to pharmacokinetic studies of furosemide is shown.  相似文献   

3.
A high-performance liquid chromatographic method for the determination of picotamide in human plasma and urine is described. After addition of an internal standard (bamifylline), the plasma and urine samples were subjected to liquid—liquid extraction and clean-up procedures. The final extracts were evaporated to dryness and the resulting residues were reconstituted in 100 μl of methanol—water (50:50, v/v) and chromatographed on a LiChrosorb RP-SELECT B reversed-phase column coupled to an ultraviolet detector monitored at 230 nm. Chromatographic analysis takes about 10 min per sample. The assay was linear over a wide range and has a limit of detection of 0.005 and 0.1 μg/ml in plasma and urine, respectively. It was selective for picotamide, accurate and robust and thus suitable for routine assays after therapeutic doses of picotamide.  相似文献   

4.
A gas chromatographic—mass spectrometric assay using selected ion monitoring is compared with a high-performance liquid chromatographic assay using an electrochemical detector for single-dose studies of the psychotherapeutic phenothiazine drug chlorpromazine. Measurements were made after extraction of chlorpromazine and the internal standard, prochlorperazine, from basified plasma with an isopropanol—pentane solvent mixture. Following evaporation of the organic solvents the residue was reconstituted in a small volume of methanol and subjected to gas chromatographic—mass spectrometric selected ion detection. The residual sample was then evaporated and made up in a larger volume of acetonitrile and analyzed by high-performance liquid chromatography using an electrochemical detector. These specific methods display excellent correlation for plasma concentration determinations in the range of 0.25–10 ng ml−1 and will allow for the study of the pharmacokinetics of chlorpromazine following single low doses of the drug.  相似文献   

5.
A simple, accurate and sensitive high-performance liquid chromatographic method was developed for the determination of propofol, an intravenous anaesthetic agent, in rat whole blood or plasma samples. The method is based on precipitation of the protein in the biological fluid sample and direct injection of the supernatant into an HPLC system involving a C18 reversed-phase column using a methanol-water (70:30) mobile phase delivered at 1 ml/min. Propofol and the internal standard (4-tert.-octylphenol) were quantified using a fluorescence detector set at 276 nm (excitation) and 310 nm (emission). The analyte and internal standard had retention times of 6.3 and 10.5 min, respectively. The limit of quantification for propofol was 50 ng/ml using 100 μl of whole blood or plasma sample. Calibration curves were linear (r2=0.99) over a 1–10 μg/ml concentration range and intra- and inter-day precision were between 4–11%. The assay was applied to the determination of propofol whole blood pharmacokinetics and propofol whole blood to plasma distribution ratios in rats.  相似文献   

6.
A sensitive reversed-phase high-performance liquid chromatographic method has been developed and validated for the quantitative determination of docetaxel (I) in human plasma. The concentrations in plasma, for validation procedures spiked with known amounts of I, are read from calibration curves in the range of 10–20 000 ng/ml. The sample preparation involved a liquid–liquid extraction of 1000 μl of sample with a mixture of acetonitrile–n-butylchloride (1:4, v/v). The related compound paclitaxel (II) was used as internal standard. Chromatographic separations were performed an Inertsil ODS-80A column, with UV detection performed at 230 nm. The overall extraction recoveries were 84.3 and 90.0% for I and II, respectively. The lower limit of quantitation was 10 ng/ml, and the accuracy, within-run and between-run precisions at three tested concentrations fell within the generally accepted criteria for bioanalytical assays.  相似文献   

7.
This paper describes microextraction and gas chromatographic analysis of diazepam from human plasma. The method was based on immobilisation of 1.5 μl of 1-octanol on a polyacrylate-coated fiber designed for solid-phase microextraction. The solvent-modified fibre was used to extract diazepam from the samples. The plasma sample was pre-treated to release diazepam from the protein binding. The fibre was inserted into the modified plasma sample, adjusted to pH 5.5, an internal standard was added and the mixture was carefully stirred for 4 min. The fibre with the immobilised solvent and the enriched analytes was injected into the capillary gas chromatograph. The solvent and the extracted analytes were evaporated at 300°C in the split-splitless injection port of the gas chromatograph, separated on a methylsilicon capillary column and detected with a nitrogen-phosphorus detector. The method was shown to be reproducible with a detection limit of 0.10 nmol/ml in human plasma.  相似文献   

8.
A sensitive gas chromatographic method with flame ionization detection was developed for the analysis in plasma of the novel anticonvulsant d,l-3-hydroxy-3-ethyl-3-phenylpropionamide (HEPP), using d,l-2-hydroxy-2-ethyl-2-phenylacetamide as the internal standard. HEPP was extracted from alkalinized plasma into dichloromethane and quantified after derivatization with bis(trimethylsilyl)-trifluoroacetamide. Standard curves were linear from 0.5 to 50 and from 2 to 100 μg/ml of plasma, using 1.5 and 5 μg of the internal standard, respectively. The lower limit of detection at a signal-to-noise ratio of 3 standard deviations was 0.33 μg/ml of sample. The sensitivity, accuracy and reproducibility of the method were shown to be satisfactory for pharmacokinetic studies of HEPP. After intraperitoneal administration of 50 mg/kg to Wistar rats, the principal kinetic parameters were: absorption half-life = 0.04 h; volume of distribution = 1.32 l/kg; clearance = 4.40 ml/min; peak concentration = 50 μg/ml; peak time = 0.25 h; mean residence time = 4.55 h.  相似文献   

9.
An automated high-performance liquid chromatographic method for the determination of the diuretic drug furosemide has been established. Dog plasma was injected directly into a two-column system with a BSA—ODS (ODS column coated with bovine serum albumin) precolumn and a C18 analytical column for the separation of furosemide. The two columns were automatically switched. Furosemide remained trapped on the precolumn while proteins were eluted to waste. After column switching, furosemide was washed onto the analytical column and analysed without interference. The greatest advantage of the method is its easy performance without manual sample preparation; it requires no extraction or deproteinization. The method allows determination of 0.1–10 μg/ml of furosemide with accuracy and precision comparable with previously reported values. The coefficients of variation obtained from replicate measurements of 1 μg/ml and 5 μg/ml samples were 1.65% and 2.40%, respectively. This method was used to measure the plasma levels of furosemide in beagle dogs to whom the drugs was administered, as a reference, in a toxicological study.  相似文献   

10.
A high-performance liquid chromatographic method is described for the determination of paroxetine in human plasma. Dibucaine was used as the internal standard. Paroxetine was isolated by solid phase extraction using a Bond-Elut C18 extraction column. Separation was obtained using a reversed-phase column under isocratic conditions with fluorescence detection. The sample volume was 500 μl of plasma. The intra- and inter-assay accuracy and precision, determined as relative error and relative standard deviation, respectively, were less than 10%. The lower limit of quantitation, based on standards with acceptable relative error and relative standard deviation, was 10 ng ml−1. No endogenous compounds were found to interfere. The linearity was assessed in the range 5–100 ng ml−1. Stability of paroxetine during processing (autosampler) and in plasma was checked. This method proved suitable for bioequivalence studies following multiple doses in healthy volunteers.  相似文献   

11.
A high-performance liquid chromatographic assay for pilocarpine has been developed for the determination of pilocarpine in aqueous humor. A structurally similar internal standard is used, and pilocarpine is separated from isopilocarpine under the chromatographic conditions used. A 100μl sample is mixed with an aliquot of internal standard at pH 8.3 and extracted with methylene chloride. The extract is evaporated to dryness and the alkaloids are quaternized with p-nitrobenzyl bromide. Following the quaternization, the sample is evaporated to dryness, washed and diluted with a mobile phase—triethylamine mixture and analyzed by high-performance liquid chromatography using a reversed-phase octadecylsilane column with detection at a wavelength of 254 nm. This is a highly sensitive, reproducible and selective assay for measuring pilocarpine at physiological levels in individual aqueous humor samples.  相似文献   

12.
A high-performance liquid chromatographic method was developed for the determination of a chemoprotective agent, 2-(allylthio)pyrazine (I), in human plasma and urine, and in rat blood and tissue homogenate using diazepam as an internal standard. The sample preparation was simple; 2.5 volumes of acetonitrile were added to the biological sample to deproteinize it. A 50–100 μl aliquot of the supernatant was injected onto a C18 reversed-phase column. The mobile phase employed was acetonitrile–water (55:45, v/v), and it was run at a flow-rate of 1.5 ml/min. The column effluent was monitored using an ultraviolet detector at 330 nm. The retention times for I and the internal standard were 4.0 and 5.1 min, respectively. The detection limits of I in human plasma and urine, and in rat tissue homogenate (including blood) were 20, 20 and 50 ng/ml, respectively. The coefficients of variation of the assay (within-day and between-day) were generally low (below 6.1%) in a concentration range from 0.02 to 10 μg/ml for human plasma and urine, and for rat tissue homogenate. No interferences from endogenous substances were found.  相似文献   

13.
A rapid, sensitive and selective liquid chromatographic procedure was developed to quantitate the levels of a novel leukotriene D4 antagonist, MK-0571 (I), in biological samples. The method involves the addition of an internal standard, an analogue of I, and methanol to the biological matrix. Following centrifugation the supernatant is chromatographed isocratically on a C18 reversed-phase column and the acids are detected with an ultraviolet detector. The sensitivity of the method is such that 50 ng of drug can be quantitated per aliquot of sample. Assays were linear over a 0.06–40.0 μg range and exhibited a recovery of 100.5 ± 7.0% (mean ± S.D.) over this range. This procedure was utilized to monitor plasma, liver and urinary levels of I in chronic and acute toxicity studies in several animal species.  相似文献   

14.
A high-performance liquid chromatographic method for the determination of nitrite and nitrate anions derived from nitric oxide in biological fluids is presented. After separation on a strong anion-exchange column (Spherisorb SAX, 250×4.6 mm I.D., 5 μm), two on-line post-column reactions occur. The first involves nitrate reduction to nitrite on a copper-plated cadmium-filled column. In the second, the diazotization-coupling reaction between nitrite and the Griess reagent (0.05% naphtylethylendiamine dihydrochloride plus 0.5% sulphanilamide in 5% phosphoric acid) takes place, and the absorbance of the chromophore is read at 540 nm. This methodology was applied to biological fluids. Before injection into the chromatographic system, the samples were diluted and submitted to suitable clean-up procedures (urine and cell culture supernatant samples are passed through C18 cartridges, and serum samples were deproteinized by ultrafiltration through membranes with a molecular mass cut-off of 3000). The method has a sensitivity of 30 pmol for both anions, as little as 0.05–0.1 ml sample volume is required and linearity is observed up to 60 nmol for each anion.  相似文献   

15.
In this study, a high-performance liquid chromatographic method was developed for the quantitative determination of erythromycin (EM), roxithromycin (RXM), and azithromycin (AZM) in rat plasma with amperometric detection under a standardized common condition using clarithromycin (CAM) as an internal standard. This method was also proved to be applicable for the determination of CAM by employing RXM as an internal standard. Each drug was extracted from 150 μl of plasma sample spiked with internal standard under an alkaline condition with tert.-butyl methyl ether. The detector cell potential for the oxidation of the drugs was set at +950 mV. The linearity of the calibration curves were preserved over the concentration ranges of 0.1–10 μg/ml for EM and RXM, and 0.03–3.0 μg/ml for CAM and AZM. Coefficients of variation and relative error were less than 9% and ±7%, respectively. The analytical method presented here was proved to be useful for the investigation of the pharmacokinetic characteristics of EM, CAM, RXM, and AZM in rats.  相似文献   

16.
An assay, based on pre-column derivatization and micro-high-performance liquid chromatography–tandem mass spectrometry, was developed for the determination of the GABAB agonist CGP 44532 in rat plasma. CGP 44532, a highly polar 3-amino-2(S)-hydroxypropylmethylphosphinic acid, presented difficulties in developing a chromatographic method for the analysis of the compound in rat plasma. Instead of analyzing the target compound directly, it was derivatized prior to separation to a 4-nitrobenzylcarbamate isopropyliden derivative. In order to reach the required quantitation limit, on-line solid-phase extraction was utilized for sample clean-up and reversed-phase micro-column high-performance liquid chromatography, for separation of the plasma samples. The separated compounds were detected by negative electrospray tandem mass spectrometry in selected reaction monitoring mode. The derivatives show good chromatographic and mass spectrometric properties and both the target compound and the internal standard, could be eluted as symmetrical peaks with good signal/noise ratio. The MS–MS detection was selective and sensitive due to the straight fragmentation pattern. After injection of 200-μl sample aliquots, the limit of quantification was 10 ng ml−1. The analytical assay is useable in the range of 10–500 ng ml−1.  相似文献   

17.
A simple and sensitive high-performance liquid chromatographic method for the simultaneous assay of amiodarone and desethylarniodarone in plasma, urine and tissues has been developed. The method for plasma samples and tissue samples after homogenizing with 50% ethanol, involves deproteinization with acetonitrile containing the internal standard followed by centrifugation and direct injection of the supernatant into the liquid chromatograph. The method for urine specimens includes extraction with a diisopropyl ether—acetonitrile (95:5, v/v) mixture at pH 7.0 using disposable Clin-Elut 1003 columns, followed by evaporation of the eluate, reconstitution of the residue in methanol—acetonitrile (1:2, v/v) mixture and injection into the chromatograph. Separation was obtained using a Radial-Pak C18 column operating in combination with a radial compression separation unit and a methanol–25% ammonia (99.3:0.7, v/v) mobile phase. A wavelength of 242 nm was used to monitor amiodarone, desethylamiodarone and the internal standard. The influence of the ammonia concentration in the mobile phase on the capacity factors of amiodarone, desethylamiodarone and two other potential metabolites, monoiodoamiodarone (L6355) and desiodoamiodarone (L3937) were investigated. Endogenous substances or a variety of drugs concomitantly used in amiodarone therapy did not interfere with the assay.The limit of sensitivity of the assay was 0.025 μg/ml with a precision of ± 17%. The inter- and intra-day coefficient of variation for replicate analyses of spiked plasma samples was less than 6%. This method has been demonstrated to be suitable for pharmacokinetic and metabolism studies of amiodarone in man.  相似文献   

18.
A high-performance liquid chromatographic method for the simultaneous determination of misonidazole and desmethylmisonidazole in plasma is described. After plasma is deproteinized with methanol and the diluted supernatant is chromatographed on a C18 reversed-phase column, both compounds are quantitated by means of an internal standard. The coefficients of variation of within-day and day-to-day precision are below 5.0% for misonidazole in the concentration range of 25–250 mg/l and below 6.1% for desmethylmisonidazole in the concentration range of 2.5–25.0 mg/l. Calibration curves are linear and an analytical recovery varying from 97.6 to 99.8% is obtained. The detection limits for misonidazole and desmethylmisonidazole in plasma are 1.4 mg/l and 0.7 mg/l, respectively.  相似文献   

19.
A sensitive high-performance liquid chromatographic method using fluorescence detection has been developed for sotalol determination in small plasma samples of children and newborns with limited blood volume. In sample sizes of 100 μl of plasma, sotalol was extracted using an internal standard and solid-phase extraction columns. Chromatographic separation was performed on a Spherisorb C6 column of 150×4.6 mm I.D. and 5 μm particle size at ambient temperature. The mobile phase consisted of acetonitrile–15 mM potassium phosphate buffer (pH 3.0) (70:30, v/v). The excitation wavelength was set at 235 nm, emission at 300 nm. The flow-rate was 1 ml/min. Sotalol and the internal standard atenolol showed recoveries of 107±8.9 and 97±8.1%, respectively. The linearity range for sotalol was between 0.07 and 5.75 μg/ml, the limit of quantitation 0.09 μg/ml. Precision values expressed as percent relative standard deviation of intra-assay varied between 0.6 and 13.6%, that of inter-assay between 2.4 and 14.4%. Accuracy varied between 86.1 and 109.8% (intra-assay) and 95.4 and 103.3% (inter-assay). Other clinically used antiarrhythmic drugs did not interfere. As an application of the assay, sotalol plasma concentrations in a 6-year-old child with supraventricular tachycardia treated with oral sotalol (3.2 mg/kg per day) are reported.  相似文献   

20.
A high-performance liquid chromatographic method is described for the determination of free captopril in human plasma. (NAC) was used as an internal standard. Plasma samples were immediately derivatized with N-(1-pyrenyl)maleimide (NPM) and stabilized with 11 M HCl. The drug of interest was isolated using a liquid-liquid extraction with ethyl acetate and separation was obtained using a reversed-phase column under isocratic conditions with fluorescence detection. The sample volume was 150 μl plasma. The intra- and inter-day accuracy and precision, determined as relative error and coefficient of variation respectively, were lessthan 10%. The lower limit of quantitation, based on standards with acceptable coefficients of variation, was 25 ng/ml. No endogenous compounds were found to interfere. The linearity was assessed in the range of 25–600 ng/ml. This method has been demonstrated to be suitable for pharmacokinetic studies in humans.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号