首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
Zhao B  Shi Y  Qin W  Li C  Wu M  Ma J  Tang L  Jin Y 《IUBMB life》2010,62(10):752-756
To study the function of a miRNA, it is necessary to identify its target genes. The most common methods to reveal miRNA target genes rely on ectopically expressed tagged Ago2 and nonphysiological overexpression or inhibition of the miRNA of interest. To uncover the natural association between miRNAs and their target genes, we isolated endogenous Ago2 protein followed by a selective strategy, which only amplified target genes of the selected miRNA from the purified RNA-induced silencing complex by miRNA specific primers. This enabled us to identify the mRNAs regulated by miRNAs of interest. Our data demonstrated that this strategy is effective and highly credible. Moreover, our results showed the evidence of efficient miRNA target sites in 5' untranslated regions and open reading frames of target mRNAs.  相似文献   

4.
5.
6.
Xie FL  Huang SQ  Guo K  Xiang AL  Zhu YY  Nie L  Yang ZM 《FEBS letters》2007,581(7):1464-1474
MicroRNAs (miRNAs) are a newly discovered class of non-protein-coding small RNAs with roughly 22 nucleotide-long. Increasing evidence has shown that miRNAs play multiple roles in biological processes, including development, cell proliferation and apoptosis and stress responses. In this research, several approaches were combined to make computational prediction of potential miRNAs and their targets in Brassica napus. We used previously known miRNAs from Arabidopsis, rice and other plant species against both expressed sequence tags (EST) and genomic survey sequence (GSS) databases to search for potential miRNAs in B. napus. A total of 21 potential miRNAs were detected following a range of strict filtering criteria. Using these potential miRNA sequences, we could further blast the mRNA database and found 67 potential targets in this species. According to the mRNA target information provided by NCBI (http://www.ncbi.nlm.nih.gov/), most of the target mRNAs appeared to be involved in plant growth, development and stress responses. To validate the prediction of miRNAs in B. napus, we performed a RT-PCR based assay of mature miRNA expression. Five miRNAs were identified in response to auxin, cadmium stress and phosphate starvation. So far, little is known about experimental or computational identification of miRNA in B. napus species. To improve efficiency for blast search, we developed an implementation (miRNAassist) that can identify homologs of miRNAs and their targets, with high sensitivity and specificity. The program is allowed to be run on Windows Operation System platform. miRNAassist is freely available if required.  相似文献   

7.
Introduction: Cancer is the second most common cause of death worldwide and its heterogeneity complicates therapy. Standard cytotoxic regiments disrupt rapidly dividing cells, regardless of their neoplastic status. The introduction of less toxic targeted therapies has partially contributed to the observed decrease in cancer-related mortality. Cell-surface proteins represent attractive targets for therapy, due to their easily-accessible localization and their involvement in essential signaling pathways, often dysregulated in cancer. Despite their clinical appeal, cell-surface proteins are often underrepresented in standard proteomic data sets, due to their poor solubility and lower expression levels compared to intracellular proteins.

Areas covered: This review will summarize some of the available techniques for enriching the cell-surface proteome, and discuss their advantages, limitations and applicability to clinical sample-testing. Moreover, we discuss currently available strategies for the development of novel targeted therapies in cancer.

Expert commentary: The interest in elucidating the cancer-associated surfaceome is growing and will likely benefit from recent advancements in instrument sensitivity, method development, and a growing body of high-quality proteomics databases. Multiomics studies, in combination with functional validations (e.g. dropout screens), and evaluation of the healthy surfaceome, will likely aid in the selection of relevant targets for future therapy development.  相似文献   


8.
microRibonucleic acid (miRNAs) are small regulatory molecules that act by mRNA degradation or via translational repression. Although many miRNAs are ubiquitously expressed, a small subset have differential expression patterns that may give rise to tissue-specific complexes. MOTIVATION: This work studies gene targeting patterns amongst miRNAs with differential expression profiles, and links this to control and regulation of protein complexes. RESULTS: We find that, when a pair of miRNAs are not expressed in the same tissues, there is a higher tendency for them to target the direct partners of the same hub proteins. At the same time, they also avoid targeting the same set of hub-spokes. Moreover, the complexes corresponding to these hub-spokes tend to be specific and nonoverlapping. This suggests that the effect of miRNAs on the formation of complexes is specific.  相似文献   

9.
Multiple myeloma(MM) is a common malignant hematological disease. Dysregulation of micro RNAs(mi RNAs) in MM cells and bone marrow microenviroment has important impacts on the initiation and progression of MM and drug resistance in MM cells. Recently, it was reported that MM patient serum and plasma contained sufficiently stable mi RNA signatures, and circulating mi RNAs could be identified and measured accurately from body fluid. Compared to conventional diagnostic parameters, the circulating mi RNA profile is appropriate for the diagnosis of MM and estimates patient progression and therapeutic outcome with higher specificity and sensitivity. In this review, we mainly focus on the potential of circulating mi RNAs as diagnostic, prognostic, and predictive biomarkers for MM and summarize the general strategies and methodologies for identification and measurement of circulating mi RNAs in various cancers. Furthermore, we discuss the correlation between circulating mi RNAs and the cytogenetic abnormalities and biochemical parameters assessed in multiple myeloma.  相似文献   

10.
MicroRNAs (miRNAs) regulate gene expression for diverse functions, but only a limited number of mRNA targets have been experimentally identified. We show that GW182 family proteins AIN-1 and AIN-2 act redundantly to regulate the expression of miRNA targets, but not miRNA biogenesis. Immunoprecipitation (IP) and mass spectrometry indicate that AIN-1 and AIN-2 interact only with miRNA-specific Argonaute proteins ALG-1 and ALG-2 and with components of the core translational initiation complex. Known miRNA targets are enriched in AIN-2 complexes, correlating with the expression of corresponding miRNAs. Combining IP with pyrosequencing and microarray analysis of RNAs associated with AIN-1/AIN-2, we identified 106 previously annotated miRNAs plus nine new candidate miRNAs, but nearly no siRNAs, and more than 3500 potential miRNA targets, including nearly all known ones. Our results demonstrate an effective biochemical approach to systematically identify miRNA targets and provide valuable insights regarding the properties of miRNA effector complexes.  相似文献   

11.
The N-terminal acetyltransferase NatB in Saccharomyces cerevisiae consists of the catalytic subunit Nat3p and the associated subunit Mdm20p. We here extend our present knowledge about the physiological role of NatB by a combined proteomics and phenomics approach. We found that strains deleted for either NAT3 or MDM20 displayed different growth rates and morphologies in specific stress conditions, demonstrating that the two NatB subunits have partly individual functions. Earlier reported phenotypes of the nat3Delta strain have been associated with altered functionality of actin cables. However, we found that point mutants of tropomyosin that suppress the actin cable defect observed in nat3Delta only partially restores wild-type growth and morphology, indicating the existence of functionally important acetylations unrelated to actin cable function. Predicted NatB substrates were dramatically overrepresented in a distinct set of biological processes, mainly related to DNA processing and cell cycle progression. Three of these proteins, Cac2p, Pac10p, and Swc7p, were identified as true NatB substrates. To identify N-terminal acetylations potentially important for protein function, we performed a large-scale comparative phenotypic analysis including nat3Delta and strains deleted for the putative NatB substrates involved in cell cycle regulation and DNA processing. By this procedure we predicted functional importance of the N-terminal acetylation for 31 proteins.  相似文献   

12.
13.
MicroRNAs (miRNAs) are small RNA molecules (~ 20–30 nucleotides) that generally act in gene silencing and translational repression through the RNA interference pathway. They generally originate from intergenic genomic regions, but some are found in genomic regions that have been characterized such as introns, exons, and transposable elements (TE). To identify the miRNAs that are derived from palindromic MERs, we analyzed MER paralogs in human genome. The structures of the palindromic MERs were similar to the hairpin structure of miRNA in humans. Three miRNAs derived from MER96 located on chromosome 3, and MER91C paralogs located on chromosome 8 and chromosome 17 were identified in HeLa, HCT116, and HEK293 cell lines. The interactions between these MER-derived miRNAs and AGO1, AGO2, and AGO3 proteins were validated by immunoprecipitation assays. The data suggest that miRNAs derived from transposable elements could widely affect various target genes in the human genome.  相似文献   

14.
15.
MicroRNAs (miRNAs) and the mRNA targets of miRNAs were identified by sequence complementarity within a DNA sequence database for species of the Triticeae. Data screening identified 28 miRNA precursor sequences from 15 miRNA families that contained conserved mature miRNA sequences within predicted stem-loop structures. In addition, the identification of 337 target sequences among Triticeae genes provided further evidence of the existence of 26 miRNA families in the cereals. MicroRNA targets included genes that are homologous to known targets in diverse model species as well as novel targets. MicroRNA precursors and targets were identified in 10 related species, though the great majority of them were identified in bread wheat, Triticum aestivum, and barley, Hordeum vulgare, the two species with the largest EST data sets among the Triticeae.  相似文献   

16.
冀磊  谢建平 《生物工程学报》2018,34(8):1326-1337
随着结核病耐药现象越来越严重,迫切需要开发新型抗结核药物,而大部分的药物开发主要依赖于新型的抗生素靶标的发现。文中综述了2016年以来新出现的具有开发为抗结核药物潜力的新化合物,并重点阐述了这些新化合物所针对的抗生素靶标,将有助于针对这些靶标进一步开发新型抗结核药物。  相似文献   

17.
To comprehend the events during developmental biology, fundamental knowledge about the basic machinery of regulation is a prerequisite. MicroRNA (miRNAs) act as regulators in most of the biological processes and recently, it has been concluded that miRNAs can act as modulatory factors even during developmental process from lower to higher animal. Zebrafish, because of its favorable attributes like tiny size, transparent embryo, and rapid external embryonic development, has gained a preferable status among all other available experimental animal models. Currently, zebrafish is being utilized for experimental studies related to stem cells, regenerative molecular medicine as well drug discovery. Therefore, it is important to understand precisely about the various miRNAs that controls developmental biology of this vertebrate model. In here, we have discussed about the miRNA-controlled zebrafish developmental stages with a special emphasis on different miRNA families such as miR-430, miR-200, and miR-133. Moreover, we have also reviewed the role of various miRNAs during embryonic and vascular development stages of zebrafish. In addition, efforts have been made to summarize the involvement of miRNAs in the development of different body parts such as the brain, eye, heart, muscle, and fin, etc. In each section, we have tried to fulfill the gaps of zebrafish developmental biology with the help of available knowledge of miRNA research. We hope that precise knowledge about the miRNA-regulated developmental stages of zebrafish may further help the researchers to efficiently utilize this vertebrate model for experimental purpose.  相似文献   

18.
19.
In spite of the rapid advances in the development of the new proteomic technologies, there are, to date, relatively fewer studies aiming to explore the neuronal proteome. One of the reasons is the complexity of the brain, which presents high cellular heterogeneity and a unique subcellular compartmentalization. Therefore, tissue fractionation of the brain to enrich proteins of interest will reduce the complexity of the proteomics approach leading to the production of manageable and meaningful results. In this review, general considerations and strategies of proteomics, the advantages and challenges to exploring the neuronal proteome are described and summarized. In addition, this article presents an overview of recent advances of proteomic technologies and shows that proteomics can serve as a valuable tool to globally explore the changes in brain proteome during various disease states. Understanding the molecular basis of brain function will be extremely useful in identifying novel targets for the treatment of brain diseases.  相似文献   

20.
MicroRNAs (miRNAs) are small noncoding RNAs that play crucial regulatory roles by targeting mRNAs for silencing. To identify miRNAs in Jatropha curcas L, a bioenergy crop, cDNA clones from two small RNA libraries of leaves and seeds were sequenced and analyzed using bioinformatic tools. Fifty-two putative miRNAs were found from the two libraries, among them six were identical to known miRNAs and 46 were novel. Differential expression patterns of 15 miRNAs in root, stem, leave, fruit and seed were detected using quantitative real-time PCR. Ten miRNAs were highly expressed in fruit or seed, implying that they may be involved in seed development or fatty acids synthesis in seed. Moreover, 28 targets of the isolated miRNAs were predicted from a jatropha cDNA library database. The miRNA target genes were predicted to encode a broad range of proteins. Sixteen targets had clear BLASTX hits to the Uniprot database and were associated with genes belonging to the three major gene ontology categories of biological process, cellular component, and molecular function. Four targets were identified for JcumiR004. By silencing JcumiR004 primary miRNA, expressions of the four target genes were up-regulated and oil composition were modulated significantly, indicating diverse functions of JcumiR004.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号