首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Recent studies have identified members of the CLCA (chloride channels, calcium-activated) gene family as potential modulators of the cystic fibrosis (CF) phenotype, but differences between the human and murine CLCA genes and proteins may limit the use of murine CF models. Recently established pig models of CF are expected to mimic the human disease more closely than the available mouse models do. Here, we characterized the porcine CLCA gene locus, analyzed the expression pattern and protein processing of pCLCA1, and compared it to its human ortholog, hCLCA1. The porcine CLCA gene family is located on chromosome 4q25, with a broad synteny with the human and murine clca gene loci, except for a pig-specific gene duplication of pCLCA4. Using pCLCA1-specific antibodies, the protein was immunohistochemically localized in mucin-producing cells, including goblet cells and mucinous glands in the respiratory and alimentary tracts. Similar to hCLCA1, biochemical characterization of pCLCA1 identified a secreted soluble protein that could serve as an extracellular signaling molecule or functional constituent of the protective mucous layers. The results suggest that pCLCA1 shares essential characteristics of hCLCA1, supporting the pig model as a promising tool for studying the modulating role of pCLCA1 in the complex pathology of CF. (J Histochem Cytochem 57:1169–1181, 2009)  相似文献   

2.
Advanced protein structure prediction methods combined with structure modeling show that the mammalian proteins, described until now as calcium-activated chloride channels (CLCAs), appear in fact to be membrane anchored metal-dependent hydrolases, possibly proteases. A metallohydrolase structural domain was predicted, unexpectedly, in the CLCA sequences. The well-conserved active site in the modeled structure of this hydrolase domain allows the prediction of catalytic action similar to that of metalloproteases. A number of protein structure prediction methods suggest the overall fold of the N-terminal hydrolase domain to be most similar to that of zinc metalloproteases (zincins), notably matrixins. This is confirmed by analysis of the three-dimensional structure model of the predicted CLCA1 hydrolase domain built using the known structure of the MMP-11 catalytic domain. Fragments of CLCA1 corresponding to the modeled hydrolase domain were expressed in Escherichia coli, and the resulting proteins were readily refolded into monomeric soluble protein, indicating formation of stable independent domains. The homology model was used to predict putative substrate sequences. Homologs of mammalian CLCA genes were detected in the genomes of a vast array of multicellular animals: lower vertebrates, tunicates, insects, crustaceans, echinoderms, and flatworms. The hydrolase prediction is discussed in the context of published experimentally determined effects of CLCA proteins on chloride conductance. Altered proteolytic processing of full-length CLCA1 containing a mutation abolishing the predicted hydrolase activity is shown as initial experimental evidence for a role of the hydrolase domain in processing of mature full-length CLCA1. The hydrolase prediction together with the presented experimental data add to doubts about the function of CLCAs as chloride channels and strengthen the hypothesis of channel-activating and/or channel-accessory roles.  相似文献   

3.
Emerging porcine models of cystic fibrosis (CF) are expected to mimic the human disease more closely than current mouse models do. However, little is known of the tissue and cellular expression patterns of the porcine CF transmembrane conductance regulator (pCFTR) and possible differences from human CFTR (hCFTR). Here, the expression pattern of pCFTR was systematically established on the mRNA and protein levels. Using specific anti-pCFTR antibodies, the majority of the protein was immunohistochemically detected on paraffin-embedded sections and on cryostate sections in the apical cytosol of intestinal crypt epithelial cells, nasal, tracheal, and bronchial epithelial cells, and other select, mostly glandular epithelial cells. Confocal laser scanning microscopy with co-localization of the Golgi marker 58K localized the protein in the cytosol between the Golgi apparatus and the apical cell membrane with occasional punctate or diffuse staining of the apical membrane. The tissue and cellular distribution patterns were confirmed by RT-PCR from whole tissue lysates or select cells after laser capture microdissection. Thus, expression of pCFTR was found to largely resemble that of hCFTR except for the kidney, brain, and cutaneous glands, which lack expression in pigs. Species-specific differences between pCFTR and hCFTR may become relevant for future interpretations of the CF phenotype in pig models. (J Histochem Cytochem 58:785–797, 2010)  相似文献   

4.
Cystic fibrosis is caused by mutations in the cystic fibrosis transmembrane conductance regulator (CFTR), a member of the ATP-binding cassette (ABC) family of membrane transport proteins. CFTR is unique among ABC proteins in that it functions not as an active transporter but as an ATP-gated Cl? channel. As an ion channel, the function of the CFTR transmembrane channel pore that mediates Cl? movement has been studied in great detail. On the other hand, only low resolution structural data is available on the transmembrane parts of the protein. The structure of the channel pore has, however, been modeled on the known structure of active transporter ABC proteins. Currently, significant barriers exist to building a unified view of CFTR pore structure and function. Reconciling functional data on the channel with indirect structural data based on other proteins with very different transport functions and substrates has proven problematic. This review summarizes current structural and functional models of the CFTR Cl? channel pore, including a comprehensive review of previous electrophysiological investigations of channel structure and function. In addition, functional data on the three-dimensional arrangement of pore-lining helices, as well as contemporary hypotheses concerning conformational changes in the pore that occur during channel opening and closing, are discussed. Important similarities and differences between different models of the pore highlight current gaps in our knowledge of CFTR structure and function. In order to fill these gaps, structural and functional models of the membrane-spanning pore need to become better integrated.  相似文献   

5.
6.
Chloride permeation through the cystic fibrosis transmembrane conductance regulator (CFTR) Cl- channel is blocked by a broad range of anions that bind tightly within the pore. Here we show that the divalent anion Pt(NO2)42- acts as an impermeant voltage-dependent blocker of the CFTR pore when added to the intracellular face of excised membrane patches. Block was of modest affinity (apparent Kd 556 microM), kinetically fast, and weakened by extracellular Cl- ions. A mutation in the pore region that alters anion selectivity, F337A, but not another mutation at the same site that has no effect on selectivity (F337Y), had a complex effect on channel block by intracellular Pt(NO2)42- ions. Relative to wild-type, block of F337A-CFTR was weakened at depolarized voltages but strengthened at hyperpolarized voltages. Current in the presence of Pt(NO2)42- increased at very negative voltages in F337A but not wild-type or F337Y, apparently due to relief of block by permeation of Pt(NO2)42- ions to the extracellular solution. This "punchthrough" was prevented by extracellular Cl- ions, reminiscent of a "lock-in" effect. Relief of block in F337A by Pt(NO2)42- permeation was only observed for blocker concentrations above 300 microM; as a result, block at very negative voltages showed an anomalous concentration dependence, with an increase in blocker concentration causing a significant weakening of block and an increase in Cl- current. We interpret this effect as reflecting concentration-dependent permeability of Pt(NO2)42- in F337A, an apparent manifestation of an anomalous mole fraction effect. We suggest that the F337A mutation allows intracellular Pt(NO2)42- to enter deeply into the CFTR pore where it interacts with multiple binding sites, and that simultaneous binding of multiple Pt(NO2)42- ions within the pore promotes their permeation to the extracellular solution.  相似文献   

7.
We have isolated and characterized a human cDNA (HBK2) that is homologous to novel member (RCK2) of the K+ channel RCK gene family expressed in rat brain. RCK2 mRNA was detected predominantly in midbrain areas and brainstem. The primary sequences of the HBK2/RCK2 K+ channel proteins exhibit major differences to other members of the RCK gene family. The bend region between segments S1 and S2 is unusually long and does not contain the N-glycosylation site commonly found in this region. They might be O-glycosylated instead. Functional characterization of the HBK2/RCK2 K+ channels in Xenopus laevis oocytes following micro-injection in in vitro transcribed HBK2 or RCK2 cRNA showed that the HBK2/RCK2 proteins form voltage-gated K+ channels with novel functional and pharmacological properties. These channels are different to RCK1, RCK3, RCK4 and RCK5 K+ channels.  相似文献   

8.
Fibrotic remodeling is an adverse consequence of immune response-driven phenotypic modulation of cardiac cells following myocardial infarction(Ml).MicroRNA-146b(miR-146b)is an active regulator of immunomodulation,but its function in the cardiac inflammatory cascade and its clinical implication in fibrotic remodeling following Ml remain largely unknown.Herein,miR-146b-5p was found to be upregulated in the infarcted myocardium of mice and the serum of myocardial ischemia patients.Gain-and loss-of-function experiments demonstrated that miR-146b-5p was a hypoxia-induced regulator that governed the pro-fibrotic phenotype transition of cardiac cells.Overexpression of miR-146b-5p activated fibroblast proliferation,migration,and fibroblast-to-myofibroblast transition,impaired endothelial cell function and stress survival,and disturbed macrophage paracrine signaling.Interestingly,the opposite effects were observed when miR-146b-5p expression was inhibited.Luciferase assays and rescue studies demonstrated that the miR-146b-5p target genes mediating the above phenotypic modulations included interleukin 1 receptor associated kinase 1(IRAKI)and carcinoembryonic antigen related cell adhesion molecule 1(CEACAM1).Local delivery of a miR-146b-5p antagomir significantly reduced fibrosis and cell death,and upregulated capillary and reparative macrophages in the infarcted myocardium to restore cardiac remodeling and function in both mouse and porcine Ml models.Local inhibition of miR-146b-5p may represent a novel therapeutic approach to treat cardiac fibrotic remodeling and dysfunction following Ml.  相似文献   

9.
10.
The spatial and temporal localisation of a calcium-activated chloride channel (CLCA) and its mRNA was investigated, during the in vivo and in vitro development of stratified epithelia, by fluorescence immunohistochemistry and quantitative polymerase chain reaction in embryonic chicken corneas and the expansion of excised human corneal stem cells on amniotic membrane. Single-layered human epithelial cultures on amniotic membrane and early day embryonic chicken corneas expressed relatively little human CLCA2 or its chicken homologue. However, as the epithelium in both models matured and the number of cell-layers increased, the gene expression level and protein staining intensity increased, primarily within the basal cells of both the cultured and embryonic tissues. These results demonstrate that human CLCA2 protein and mRNA expression are elevated during epithelial stratification, suggesting that this protein plays a role in the growth of multi-layered corneal epithelia during both natural development and tissue cultivation. This work was supported by the Japanese Society for the Promotion of Science (CJC) and The Royal Society (C.J.C.).  相似文献   

11.
In plants, malate is a central metabolite and fulfills a large number of functions. Vacuolar malate may reach very high concentrations and fluctuate rapidly, whereas cytosolic malate is kept at a constant level allowing optimal metabolism. Recently, a vacuolar malate transporter (Arabidopsis thaliana tonoplast dicarboxylate transporter, AttDT) was identified that did not correspond to the well-characterized vacuolar malate channel. We therefore hypothesized that a member of the aluminum-activated malate transporter (ALMT) gene family could code for a vacuolar malate channel. Using GFP fusion constructs, we could show that AtALMT9 (A. thaliana ALMT9) is targeted to the vacuole. Promoter-GUS fusion constructs demonstrated that this gene is expressed in all organs, but is cell-type specific as GUS activity in leaves was detected nearly exclusively in mesophyll cells. Patch-clamp analysis of an Atalmt9 T-DNA insertion mutant exhibited strongly reduced vacuolar malate channel activity. In order to functionally characterize AtALMT9 as a malate channel, we heterologously expressed this gene in tobacco and in oocytes. Overexpression of AtALMT9-GFP in Nicotiana benthamiana leaves strongly enhanced the malate current densities across the mesophyll tonoplasts. Functional expression of AtALMT9 in Xenopus oocytes induced anion currents, which were clearly distinguishable from endogenous oocyte currents. Our results demonstrate that AtALMT9 is a vacuolar malate channel. Deletion mutants for AtALMT9 exhibit only slightly reduced malate content in mesophyll protoplasts and no visible phenotype, indicating that AttDT and the residual malate channel activity are sufficient to sustain the transport activity necessary to regulate the cytosolic malate homeostasis.  相似文献   

12.
13.
14.
Na(+)-activated potassium channels (K(Na)) have been identified in cardiomyocytes and neurons where they may provide protection against ischemia. We now report that K(Na) is encoded by the rSlo2 gene (also called Slack), the mammalian ortholog of slo-2 in C. elegans. rSlo2, heterologously expressed, shares many properties of native K(Na) including activation by intracellular Na(+), high conductance, and prominent subconductance states. In addition to activation by Na(+), we report that rSLO-2 channels are cooperatively activated by intracellular Cl(-), similar to C. elegans SLO-2 channels. Since intracellular Na(+) and Cl(-) both rise in oxygen-deprived cells, coactivation may more effectively trigger the activity of rSLO-2 channels in ischemia. In C. elegans, mutational and physiological analysis revealed that the SLO-2 current is a major component of the delayed rectifier. We demonstrate in C. elegans that slo-2 mutants are hypersensitive to hypoxia, suggesting a conserved role for the slo-2 gene subfamily.  相似文献   

15.
It has recently been reported that dipeptidyl aminopeptidase X (DPPX) interacts with the voltage-gated potassium channel Kv4 and that co-expression of DPPX together with Kv4 pore forming alpha-subunits, and potassium channel interacting proteins (KChIPs), reconstitutes properties of native A-type potassium channels in vitro. Here we report the X-ray crystal structure of the extracellular domain of human DPPX determined at 3.0A resolution. This structure reveals the potential for a surface electrostatic change based on the protonation state of histidine. Subtle changes in extracellular pH might modulate the interaction of DPPX with Kv4.2 and possibly with other proteins. We propose models of DPPX interaction with the voltage-gated potassium channel complex. The dimeric structure of DPPX is highly homologous to the related protein DPP-IV. Comparison of the active sites of DPPX and DPP-IV reveals loss of the catalytic serine residue but the presence of an additional serine near the "active" site. However, the arrangement of residues is inconsistent with that of canonical serine proteases and DPPX is unlikely to function as a protease (dipeptidyl aminopeptidase).  相似文献   

16.
We have recently compared the biophysical and pharmacological properties of native Ca(2+)-activated Cl(-) currents in murine portal vein with mCLCA1 channels cloned from murine portal vein myocytes (Britton, F. C., Ohya, S., Horowitz, B., and Greenwood, I. A. (2002) J. Physiol. (Lond.) 539, 107-117). These channels shared a similar relative permeability to various anions, but the expressed channel current lacked the marked time dependence of the native current. In addition, the expressed channel showed a lower Ca(2+) sensitivity than the native channel. As non-pore-forming regulatory beta-subunits alter the kinetics and increase the Ca(2+) sensitivity of Ca(2+)-dependent K(+) channels (BK channels) we investigated whether co-expression of beta-subunits with CLCA1 would alter the kinetics/Ca(2+) sensitivity of mCLCA1. Internal dialysis of human embryonic kidney cells stably expressing CLCA1 with 500 nM Ca(2+) evoked a significantly larger current when the beta-subunit KCNMB1 was co-expressed. In a small number of co-transfected cells marked time dependence to the activation kinetics was observed. Interaction studies using the mammalian two-hybrid technique demonstrated a physical association between CLCA1 and KCNMB1 when co-expressed in human embryonic kidney cells. These data suggest that activation of CLCA1 can be modified by accessory subunits.  相似文献   

17.
18.
19.
While the most common causes of clonal instability are DNA copy number loss and silencing, toxicity of the expressed protein(s) may also induce clonal instability. Human DNase I (hDNase I) is used therapeutically for the treatment of cystic fibrosis (CF) and may have potential benefit for use in systemic lupus erythematosus (SLE). hDNase I is an endonuclease that catalyzes degradation of extracellular DNA and is inhibited by both salt and G‐actin. Engineered versions of hDNase I, bearing multiple point mutations, which renders them Hyperactive, Salt‐ and Actin‐Resistant (HSAR‐hDNase I) have been developed previously. However, constitutive expression of HSAR‐hDNase I enzymes has been very challenging and, despite considerable efforts and screening thousands of clones, no stable clone capable of constitutive expression had been obtained. Here, we developed a regulated expression system for stable expression of an HSAR‐hDNase I in Chinese Hamster Ovary (CHO) cells. The HSAR‐hDNase I clones were stable and, upon induction, expressed enzymatically functional protein. Our findings suggest that degradation of host's DNA mediated by HSAR‐hDNase I during cell division is the likely cause of clonal instability observed in cells constitutively expressing this protein. Purified HSAR‐hDNase I was both hyperactive and resistant to inhibition by salt and G‐actin, resulting in an enzyme having ca. 10‐fold greater specific activity and the potential to be a superior therapeutic agent to wild type (WT) hDNase I. Furthermore, the ability to regulate hDNase I expression has enabled process development improvements that achieve higher cell growth and product titers while maintaining product quality. © 2017 American Institute of Chemical Engineers Biotechnol. Prog., 32:523–533, 2017  相似文献   

20.
Primary (azurophil) granules of neutrophils contain proteins which play a major role in the killing and digestion of bacteria in the phagolysosome. We have isolated and characterized a novel antimicrobial peptide from the azurophil granule fraction of discontinuous Percoll gradients. We have named this peptide human neutrophil peptide 4 (HNP-4) based on its structural similarity to a group of antimicrobial polypeptides known as defensins (HNP 1-3). Using size exclusion and reverse-phase high performance liquid chromatography, HNP-4 was purified to homogeneity as judged by sodium dodecyl sulfate-polyacrylamide gel electrophoresis and amino-terminal sequence analysis. The amino acid sequence determined from isolated HNP-4 and from tryptic fragments of reduced and alkylated peptide is: NH2-Val-Cys-Ser-Cys-Arg-Leu-Val-Phe-Cys-Arg-Arg-Thr-Glu- Leu-Arg-Val-Gly-Asn-Cys-Leu-Ile-Gly-Gly-Val-Ser-Phe-Thr-Tyr-Cys-Cys-Thr- Arg-Val - COOH. Based on this sequence, HNP-4 has a calculated molecular weight of 3715 and a theoretical pI of 8.61. HNP-4 shows structural similarity to the family of three human defensins. HNP-4 and the defensins have identical cysteine backbones and, like the defensins, HNP-4 is rich in arginine (15.2 mol %). However, the amino acids at 22 of the 33 positions differ between HNP-4 and human defensins. Further, HNP-4 is significantly more hydrophobic than the defensins, as determined by its retention time on reverse-phase high performance liquid chromatography. In vitro, purified HNP-4 was shown to kill Escherichia coli, Streptococcus faecalis, and Candida albicans. Compared to a mixture of the other human defensins, HNP-4 was found to be approximately 100 times more potent against E. coli and four times more potent against both S. faecalis and C. albicans.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号