首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Individuals with Down syndrome (DS) have high levels of oxidative stress throughout the lifespan. Mouse models of DS share some structural and functional abnormalities that parallel findings seen in the human phenotype. Several of the mouse models show evidence of cellular oxidative stress and have provided a platform for antioxidant intervention. Genes that are overexpressed on chromosome 21 are associated with oxidative stress and neuronal apoptosis. The lack of balance in the metabolism of free radicals generated during processes related to oxidative stress may have a direct role in producing the neuropathology of DS including the tendency to Alzheimer disease (AD). Mitochondria are often a target for oxidative stress and are considered to be a trigger for the onset of the AD process in DS. Biomarkers for oxidative stress have been described in DS and in AD in the general population. However, intervention trials using standard antioxidant supplements or diets have failed to produce uniform therapeutic effect. This chapter will examine the biological role of oxidative stress in DS and its relationship to abnormalities in both development and aging within the disorder. This article is part of a Special Issue entitled: Antioxidants and Antioxidant Treatment in Disease.  相似文献   

2.
Down syndrome (DS) is the most common genetic cause of intellectual disability, due to partial or complete triplication of chromosome 21. DS subjects are characterized by a number of abnormalities including premature aging and development of Alzheimer disease (AD) neuropathology after approximately 40 years of age. Several studies show that oxidative stress plays a crucial role in the development of neurodegeneration in the DS population. Increased lipid peroxidation is one of the main events causing redox imbalance within cells through the formation of toxic aldehydes that easily react with DNA, lipids, and proteins. In this study we used a redox proteomics approach to identify specific targets of 4-hydroxynonenal modifications in the frontal cortex from DS cases with and without AD pathology. We suggest that a group of identified proteins followed a specific pattern of oxidation in DS vs young controls, probably indicating characteristic features of the DS phenotype; a second group of identified proteins showed increased oxidation in DS/AD vs DS, thus possibly playing a role in the development of AD. The third group of comparison, DS/AD vs old controls, identified proteins that may be considered specific markers of AD pathology. All the identified proteins are involved in important biological functions including intracellular quality control systems, cytoskeleton network, energy metabolism, and antioxidant response. Our results demonstrate that oxidative damage is an early event in DS, as well as dysfunctions of protein-degradation systems and cellular protective pathways, suggesting that DS subjects are more vulnerable to oxidative damage accumulation that might contribute to AD development. Further, considering that the majority of proteins have been already demonstrated to be oxidized in AD brain, our results strongly support similarities with AD in DS.  相似文献   

3.
Down syndrome (DS) is the most common genetic cause of intellectual disability in children, and the number of adults with DS reaching old age is increasing. By the age of 40 years, virtually all people with DS have sufficient neuropathology for a postmortem diagnosis of Alzheimer disease (AD). Trisomy 21 in DS leads to an overexpression of many proteins, of which at least two are involved in oxidative stress and AD: superoxide dismutase 1 (SOD1) and amyloid precursor protein (APP). In this study, we tested the hypothesis that DS brains with neuropathological hallmarks of AD have more oxidative and nitrosative stress than those with DS but without significant AD pathology, as compared with similarly aged-matched non-DS controls. The frontal cortex was examined in 70 autopsy cases (n = 29 control and n = 41 DS). By ELISA, we quantified soluble and insoluble Aβ40 and Aβ42, as well as oligomers. Oxidative and nitrosative stress levels (protein carbonyls, 4-hydroxy-2-trans-nonenal (HNE)-bound proteins, and 3-nitrotyrosine) were measured by slot-blot. We found that soluble and insoluble amyloid beta peptide (Aβ) and oligomers increase as a function of age in DS frontal cortex. Of the oxidative stress markers, HNE-bound proteins were increased overall in DS. Protein carbonyls were correlated with Aβ40 levels. These results suggest that oxidative damage, but not nitrosative stress, may contribute to the onset and progression of AD pathogenesis in DS. Conceivably, treatment with antioxidants may provide a point of intervention to slow pathological alterations in DS.  相似文献   

4.
Structural changes and abnormal function of mitochondria have been documented in Down's syndrome (DS) cells, patients, and animal models. DS cells in culture exhibit a wide array of functional mitochondrial abnormalities including reduced mitochondrial membrane potential, reduced ATP production, and decreased oxido-reductase activity. New research has also brought to central stage the prominent role of oxidative stress in this condition. This review focuses on recent advances in the field with a particular emphasis on novel translational approaches involving the utilization of coenzyme Q(10) (CoQ(10) ) to treat a variety of clinical phenotypes associated with DS that are linked to increased oxidative stress and energy deficits. CoQ(10) has already provided promising results in several different conditions associated with altered energy metabolism and oxidative stress in the CNS. Two studies conducted in Ancona investigated the effect of CoQ(10) treatment on DNA damage in DS patients. Although the effect of CoQ(10) was evidenced only at single cell level, the treatment affected the distribution of cells according to their content in oxidized bases. In fact, it produced a strong negative correlation linking cellular CoQ(10) content and the amount of oxidized purines. Results suggest that the effect of CoQ(10) treatment in DS not only reflects antioxidant efficacy, but likely modulates DNA repair mechanisms.  相似文献   

5.
6.
阿尔茨海默病(Alzheimer's disease,AD)是最常见的神经系统变性疾病,主要病理特征为细胞外老年斑(senile plaques,SP)和细胞内神经原纤维缠结(neurofibrillary tangles,NFT)形成.但其发病机制不清,涉及多种病理学变化如炎症反应、氧化应激、线粒体功能障碍、细胞凋亡以及突触功能障碍等.核因子E2相关因子2(nuclear factor erythroid 2-related factor 2,Nrf2)是经典的调控机体抗氧化应激反应的核转录因子.Nrf2激活后诱导抗氧化蛋白的表达,提高机体的抗氧化应激能力.随着Nrf2抗氧化应激作用研究的深入,发现Nrf2不仅能够通过抗氧化应激延缓AD的发生发展,且在AD的病理性沉积物的清除、抗炎、抗凋亡、神经营养等方面扮演着重要的角色.近年来,由于多种针对单一靶点的抗AD药物临床试验的失败,有学者提出Nrf2可能是实现AD多靶点疗法的重要因子.因此,本文对Nrf2在AD中的研究现状做一综述,为寻找治疗AD潜在的生物学靶点提供理论依据.  相似文献   

7.
Amyloid beta-peptide (1-42) [Abeta(1-42)] has been proposed to play a central role in the pathogenesis of Alzheimer's disease, a neurodegenerative disorder associated with cognitive decline and aging. AD brain is under extensive oxidative stress, and Abeta(1-42) has been shown to induce protein oxidation, lipid peroxidation, and reactive oxygen species formation in neurons and synaptosomes, all of which are inhibited by the antioxidant vitamin E. Additional studies have shown that Abeta(1-42) induces oxidative stress when expressed in vivo in Caenorhabditis elegans, but when methionine 35 is replaced by cysteine, the oxidative stress is attenuated. This finding coupled with in vitro studies using mutant peptides have demonstrated a critical role for methionine 35 in the oxidative stress and neurotoxic properties of Abeta(1-42). In this review, we discuss the role of methionine 35 in the oxidative stress and neurotoxicity induced by Abeta(1-42) and the implications of these findings in the pathogenesis of AD.  相似文献   

8.
9.
研究表明,脑内金属离子代谢失衡与阿尔茨海默病(AD)有关,但其机理尚需深入探讨.结合本实验室研究结果,作者对金属离子代谢紊乱与氧化应激,金属离子代谢紊乱与β-淀粉样蛋白、转铁蛋白和转铁蛋白受体、铁调节蛋白、二价金属离子转运体以及天然抗氧化剂通过调节金属离子代谢平衡缓解β-淀粉样蛋白的毒性和保护细胞的作用进行探讨.提出:铁、铜等金属离子缺乏可能主要与AD早期关系密切,而铁、铜等金属离子过载可能主要与AD后期损伤关系密切的学术观点.  相似文献   

10.
Alzheimer's disease (AD) is a highly disabling progressive neurodegenerative disorder characterized by a steadily growing number of patients, by the absence of a cure for the disease and by great difficulties in diagnosing in the preclinical phase. Progresses in defining the complex etiopathogenesis of AD consider oxidative stress a core aspect as far as both AD onset and progression are concerned. However, clinical trials of antioxidants in AD have brought conflicting conclusions. In this review, we report the main results of clinical trials with antioxidants in mild cognitive impairment (MCI) and AD. Although available data do not warrant the doubtless use of antioxidants in AD, they are characterized by extremely poor comparability and the absence of a substantial clinical benefit of antioxidants in AD is not disproved to date. Furthermore, the role of vascular damage that contributes to oxidative stress in AD should be addressed in testing antioxidant treatments. This article is part of a Special Issue entitled: Antioxidants and Antioxidant Treatment in Disease.  相似文献   

11.
Autism spectrum disorder (ASD) is a neurodevelopmental disorder in which evidence reveals oxidative stress and transsulfuration pathway abnormalities. Down syndrome (DS) is a genetic disorder characterized by similar oxidative stress and transsulfuration pathway abnormalities. This hypothesis‐testing longitudinal cohort study determined whether transsulfuration abnormalities and oxidative stress are important susceptibility factors in ASD etiology by evaluating the rate of ASD diagnoses in DS as compared to the general population. The Independent Healthcare Research Database was analyzed for healthcare records prospectively generated in Florida Medicaid. A cohort of 101,736 persons (born: 1990–1999) with ≥10 outpatient office visits and continuously followed for 120 months after birth was examined. There were 942 children in the DS cohort (ICD‐9 code: 758.0) and 100,749 children in the undiagnosed cohort (no DS diagnosis). ASD diagnoses were defined as autistic disorder (ICD‐9 code: 299.00) or Asperger's disorder/pervasive developmental disorder—not otherwise specified (ICD‐9 code: 299.80). ASDs were diagnosed in 5.31% of the DS cohort and 1.34% of the undiagnosed cohort. The risk ratio of being diagnosed with an ASD in the DS cohort as compared to the undiagnosed cohort was 3.97‐fold significantly increased with a risk difference of 3.97%. Among children diagnosed with DS, less than 6% were also diagnosed with an ASD. Among children diagnosed with an ASD, less than 5% were also diagnosed with DS. Children diagnosed with DS are apparently more susceptible to ASD diagnosis relative to the general population suggesting oxidative stress and transsulfuration pathway abnormalities are important susceptibility factors in ASD.  相似文献   

12.
Recent data support the role of oxidative stress in the pathogenesis of Alzheimer disease (AD). In particular, glutathione (GSH) metabolism is altered and its levels are decreased in affected brain regions and peripheral cells from AD patients and in experimental models of AD. In the past decade, interest in the protective effects of various antioxidants aimed at increasing intracellular GSH content has been growing. Because much experimental evidence suggests a possible protective role of unsaturated fatty acids in age-related diseases, we designed the synthesis of new S-acylglutathione (acyl-SG) thioesters. S-Lauroylglutathione (lauroyl-SG) and S-palmitoleoylglutathione (palmitoleoyl-SG) were easily internalized into the cells and they significantly reduced Abeta42-induced oxidative stress in human neurotypic SH-SY5Y cells. In particular, acyl-SG thioesters can prevent the impairment of intracellular ROS scavengers, intracellular ROS accumulation, lipid peroxidation, and apoptotic pathway activation. Palmitoleoyl-SG seemed more effective in cellular protection against Abeta-induced oxidative damage than lauroyl-SG, suggesting a valuable role for the monounsaturated fatty acid. In this study, we demonstrate that acyl-SG derivatives completely avoid the sharp lipoperoxidation in primary fibroblasts from familial AD patients occurring after exposure to Abeta42 aggregates. Hence, we put forward these derivatives as new antioxidant compounds which could be excellent candidates for therapeutic treatment of AD and other oxidative stress-related diseases.  相似文献   

13.
In its sporadic form Alzheimer's disease (AD) results from a combination of genetic and environmental risk factors with abnormal oxidative reactions, which result in free radical mediated injury of the brain. Isoprostanes are oxidized lipids formed by a free radical mediated mechanism, which in recent years have emerged as a reliable and sensitive marker of lipid peroxidation and oxidative stress. Consistent data show that they are increased in the brain of human AD as well as AD animal models. Besides their role as biomarkers, isoprostanes possess important biological effects, functioning as mediators of the cellular response to oxidative stress within the CNS. Recent evidence indicates that these lipid oxidation products, by activating the thromboxane receptor system, mediate the pro-amyloidotic neuronal response to oxidative stress in an experimental model of AD. This novel observation has important clinical implication, since pharmacologic modulation of the TP receptor system by selective antagonists, some of which are already available, could represent a novel therapeutic opportunity for AD as disease-modifying agents.  相似文献   

14.
Increased cerebral levels of Abeta(42) peptide, either as soluble or aggregated forms, are suggested to play a key role in the pathogenesis of Alzheimer's disease (AD). The identification of genetic defects in presenilins and beta-amyloid precursor protein (beta-APP) has led to the development of cellular and animal models that have helped in understanding aspects of the pathophysiology of the inherited early onset forms of AD. However, the majority of AD cases are sporadic with no clear or defined genetic basis. While genetic mutations are responsible for the accumulation of Abeta in early onset AD, the causative factors for accumulation of Abeta in the late onset AD forms are not known. This raises the possibility that Abeta accumulation in the absence of genetic mutations might result from abnormalities that indirectly affect Abeta production or its clearance. Currently, there is no consensus as to what are the mechanisms by which Abeta accumulates or as to which mechanisms underlie Abeta-induced neuronal death in AD. In this review, I will first describe the physiological role of endoplasmic reticulum in the cell and review some of the data supporting dysfunction of the endoplasmic reticulum as an early event leading to Abeta accumulation in familial AD. I will also discuss the possible role of oxidative stress and other factors as contributors in Abeta accumulation by reducing the clearance of Abeta from the endoplasmic reticulum. Finally, I will summarize data that show the endoplasmic reticulum stress as a mechanism underlying exogenous Abeta neurotoxicity.  相似文献   

15.
Various neurodegenerative disorders and syndromes are associated with oxidative stress. The deleterious consequences of excessive oxidations and the pathophysiological role of reactive oxygen species (ROS) have been intensively studied in Alzheimer's disease (AD). Neuronal cell dysfunction and oxidative cell death caused by the AD-associated amyloid beta protein may causally contribute to the pathogenesis of AD. Antioxidants that prevent the detrimental consequences of ROS are consequently considered to be a promising approach to neuroprotection. While there is ample experimental evidence demonstrating neuroprotective activities of antioxidants in vitro, the clinical evidence that antioxidant compounds act as protective drugs is still relatively scarce. Nevertheless, antioxidants constitute a major part of the panel of clinical and experimental drugs that are currently considered for AD prevention and therapy. Here, focus is put mainly on phenolic antioxidant structures that belong to the class of direct antioxidants. Experimental and clinical evidence for the neuroprotective potential of alpha-tocopherol (vitamin E) and 17beta-estradiol (estrogen) is shortly summarized and an outlook is given on possible novel antioxidant lead structures with improved pharmacological features.  相似文献   

16.
Oxidative stress has been associated with the onset and progression of mild cognitive impairment (MCI) and Alzheimer disease (AD). AD and MCI brain and plasma display extensive oxidative stress as indexed by protein oxidation, lipid peroxidation, free radical formation, DNA oxidation, and decreased antioxidants. The most abundant endogenous antioxidant, glutathione, plays a significant role in combating oxidative stress. The ratio of oxidized to reduced glutathione is utilized as a measure of intensity of oxidative stress. Antioxidants have long been considered as an approach to slow down AD progression. In this review, we focus on the elevation on glutathione through N-acetyl-cysteine (NAC) and γ-glutamylcysteine ethyl ester (GCEE) as a potential therapeutic approach for Alzheimer disease. This article is part of a Special Issue entitled: Antioxidants and Antioxidant Treatment in Disease.  相似文献   

17.
Subjects with Down syndrome (DS) have abnormalities in virtually all aspects of the immune system and almost all will be affected with Alzheimer’s disease (AD). It is thought that nitric oxide (NO) is involved in the pathophysiology of AD. In the present study, including a total of 401 elderly DS subjects, the spectrum of plasma amino acids and neopterin was investigated and related to development of AD. Concentrations of nearly all amino acids in DS subjects differed significantly from those of healthy controls. Neopterin was increased in DS subjects, especially in dementia. The production of NO as reflected by an increased citrulline/arginine ratio (Cit/Arg ratio) was enhanced during development of clinical dementia. Neopterin concentrations correlated to the Cit/Arg ratio only in the group of prevalent demented subjects (ρ = 0.48, P = 0.006). The results of this study are suggestive for an increase in oxidative processes in DS subjects with AD.  相似文献   

18.
Carotenoids play a pivotal role in prevention of many degenerative diseases mediated by oxidative stress including neurodegenerative diseases like Alzheimer’s Disease (AD). The involvement of retinoids in physiology, AD pathology and their therapeutic role in vitro and in vivo has been extensively studied. This review focuses on the role of carotenoids like retinoic acid (RA), all trans retinoic acid (ATRA), lycopene and β-carotene in prevention of AD symptoms primarily through inhibition of amyloid beta (Aβ) formation, deposition and fibril formation either by reducing the levels of p35 or inhibiting corresponding enzymes. The role of antioxidant micronutrients in prevention or delaying of AD symptoms has been included. This study emphasizes the dietary supplementation of carotenoids to combat AD and warrants further studies on animal models to unravel their mechanism of neuroprotection.  相似文献   

19.
The underlying mechanisms of skin inflammation in atopic dermatitis (AD) are not completely understood. The purpose of the present study was to examine the involvement of oxidative stress and antioxidant defenses in children with acute exacerbation of AD. We studied 13 children who were hospitalized for acute exacerbation of AD with purulent skin infection by Staphylococcal aureus (age, 1.5 to 10.0 years), and 28 age-matched healthy subjects (controls). Urine samples obtained from the patients on admission, on 2nd and 7th-9th hospital days, as well as from the controls were analyzed for 8-hydroxy-2'-deoxyguanosine (8-OHdG) (a marker of oxidative DNA damage), acrolein-lysine adducts (a marker of lipid peroxidation), bilirubin oxidative metabolites (BOM) (a marker of antioxidant activity of bilirubin under oxidative stress) and nitrite/nitrate (NO(x)(-)) (a marker of endogenous nitric oxide production). Of these, urinary concentrations of 8-OHdG, acrolein-lysine adducts and BOM, but not NO(x)(-), were significantly higher in AD children on admission than those in control subjects. Response to treatment was associated with significant falls in the concentrations of 8-OHdG and acrolein-lysine adducts. Urinary concentrations of acrolein-lysine adducts, but not 8-OHdG, were still significantly higher in AD patients on the 7th-9th hospital day relative to the control. Urinary BOM remained almost constant and significantly high in AD children during hospitalization. Our findings indicate that oxidative stress and altered antioxidant defenses are involved in the pathophysiology of acute exacerbation of AD, and that suppression of oxidative stress might be a potentially useful strategy for the treatment of AD.  相似文献   

20.
There is increasing recognition that mitochondrial dysfunction is associated with the autism spectrum disorders. However, little attention has been given to the etiology of mitochondrial dysfunction or how mitochondrial abnormalities might interact with other physiological disturbances associated with autism, such as oxidative stress. In the current study we used respirometry to examine reserve capacity, a measure of the mitochondrial ability to respond to physiological stress, in lymphoblastoid cell lines (LCLs) derived from children with autistic disorder (AD) as well as age and gender-matched control LCLs. We demonstrate, for the first time, that LCLs derived from children with AD have an abnormal mitochondrial reserve capacity before and after exposure to increasingly higher concentrations of 2,3-dimethoxy-1,4-napthoquinone (DMNQ), an agent that increases intracellular reactive oxygen species (ROS). Specifically, the AD LCLs exhibit a higher reserve capacity at baseline and a sharper depletion of reserve capacity when ROS exposure is increased, as compared to control LCLs. Detailed investigation indicated that reserve capacity abnormalities seen in AD LCLs were the result of higher ATP-linked respiration and maximal respiratory capacity at baseline combined with a marked increase in proton leak respiration as ROS was increased. We further demonstrate that these reserve capacity abnormalities are driven by a subgroup of eight (32%) of 25 AD LCLs. Additional investigation of this subgroup of AD LCLs with reserve capacity abnormalities revealed that it demonstrated a greater reliance on glycolysis and on uncoupling protein 2 to regulate oxidative stress at the inner mitochondria membrane. This study suggests that a significant subgroup of AD children may have alterations in mitochondrial function which could render them more vulnerable to a pro-oxidant microenvironment derived from intrinsic and extrinsic sources of ROS such as immune activation and pro-oxidant environmental toxicants. These findings are consistent with the notion that AD is caused by a combination of genetic and environmental factors.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号