首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Qin Y  Zhong Y  Dang L  Zhu M  Yu H  Chen W  Cui J  Bian H  Li Z 《Journal of Proteomics》2012,75(13):4114-4123
Although aberrant glycosylation of human glycoproteins is related to liver fibrosis that results from chronic damage to the liver in conjunction with the activation of hepatic stellate cells (HSCs), little is known about the precision alteration of protein glycosylation referred to the activation of HSCs by transforming growth factor-β1 (TGF-β1). The human HSCs, LX-2 were activated by TGF-β1. The lectin microarrays were used to probe the alteration of protein glycosylation in the activated HSCs compared with the quiescent HSCs. Lectin histochemistry was used to further validate the lectin binding profiles and assess the distribution of glycosidic residues in cells. As a result, 14 lectins (e. g. AAL, PHA-E, ECA and ConA) showed increased signal while 7 lectins (e. g. UEA-I and GNA) showed decreased signal in the activated LX-2 compared with the quiescent LX-2. Meanwhile, AAL, PHA-E and ECA staining showed moderate binding to the cytoplasma membrane in the quiescent LX-2, and the binding intensified in the same regions of the activated LX-2. In conclusion, the precision alteration of protein glycosylation related to the activation of the HSCs may provide useful information to find new molecular mechanism of HSC activation and antifibrotic therapeutic strategies.  相似文献   

2.
Quercetin (QCT) and isorhamnetin (ISO), natural flavonoids, were both shown to possess antifibrotic activity in in vivo and in vitro models of hepatic fibrosis. Although ISO is a direct metabolite of QCT differing by a methyl group, it has been reported to be absorbed more adequately and eliminated slower than QCT after oral administration. Our aim of the study was to investigate biological effect of mono-methylated QCT derivatives against fibrosis using rat hepatic stellate cells (HSC-T6). All test derivatives were synthesized from QCT. HSC-T6 cells were induced by TGFβ and treated with derivatives followed by cell proliferation assay, immunofluorescence staining of αSMA, and gene expression analysis of fibrosis markers. All compounds showed a dose- and time-dependent antiproliferation effect. ISO, 3-O-methylquercetin (3MQ), and rhamnetin (RHA) reduced αSMA mRNA; 3MQ prevented the augmentation of collagen I mRNA; and compounds, except azaleatin and 3MQ, reduced Timp1 mRNA expression in TGFβ-induced HSCs. In conclusion, each compound had singular effect against different features of fibrosis depending on the position of methyl group although the further mechanism of action of compounds during fibrosis development remains to be investigated. These findings suggest that antifibrotic effect of quercetin can be enhanced by adding methyl group on functionally important position.  相似文献   

3.
4.
5.
Activated hepatic stellate cells (HSCs) are primarily responsible for the accumulation of extracellular matrix substances during the development of liver fibrosis. It has been shown that n-3 polyunsaturated fatty acids (PUFAs) can prevent liver fibrosis development. However, the underlying mechanisms of action need further investigation. The objective of this study was to determine the regulatory roles of fatty acids (FAs) on the expression of profibrogenic genes in HSCs with the elucidation of mechanisms. LX-2 cells and primary human and mouse HSCs were treated with palmitic acid, oleic acid, linoleic acid, α-linolenic acid, eicosapentaenoic acid (EPA) or docosahexaenoic acid (DHA) to determine their effect on profibrogenic gene expression upon the activation by transforming growth factor β1 (TGFβ1). PUFAs significantly suppressed TGFβ1-induced expression of profibrogenic genes in LX-2 and primary human HSCs with n-3 being more potent than n-6 PUFAs. However, PUFAs did not inhibit the phosphorylation and nuclear translocation of SMA- and MAD-related protein in primary human HSCs. Furthermore, PUFAs did not alter the profibrogenic gene expression in primary mouse HSCs. The inhibitory effect of EPA and DHA on TGFβ1-induced profibrogenic gene expression was diminished by peroxisome proliferator-activated receptor gamma (PPARG) knockdown, although chemical inhibition of PPARγ did not elicit a similar result. The results suggest that n-3 PUFAs possess the most potent protective effects against TGFβ1-induced profibrogenic gene expression, which is, at least in part, PPARγ-dependent in HSCs.  相似文献   

6.
7.
8.
N-Acetylglucosaminyltransferase V (GnT-V), catalyzing β1-6 branching in asparagine-linked oligosaccharides, is one of the most important glycosyltransferases involved in tumor metastasis and carcinogenesis. Although the expression of GnT-V is induced in chronic liver diseases, the biological meaning of GnT-V in the diseases remains unknown. The aim of this study was to investigate the effects of GnT-V on the progression of chronic hepatitis, using GnT-V transgenic (Tg) mice fed a high fat and high cholesterol (HFHC) diet, an experimental model of murine steatohepatitis. Although enhanced hepatic lymphocytes infiltration and fibrosis were observed in wild-type (WT) mice fed the HFHC diet, they were dramatically prevented in Tg mice. In addition, the gene expression of inflammatory Th1 cytokines in the liver was significantly decreased in Tg mice than WT mice. Inhibition of liver fibrosis was due to the dysfunction of hepatic stellate cells (HSCs), which play pivotal roles in liver fibrosis through the production of transforming growth factor (TGF)-β1. Although TGF-β1 signaling was enhanced in Tg mouse-derived HSCs (Tg-HSCs) compared with WT mouse-derived HSCs (WT-HSCs), collagen expression was significantly reduced in Tg-HSCs. As a result from DNA microarray, cyclooxygenase-2 (COX2) expression, known as a negative feedback signal for TGF-β1, was significantly elevated in Tg-HSCs compared with WT-HSCs. Prostaglandin E2 (PGE2), the product of COX2, production was also significantly elevated in Tg-HSCs. COX2 inhibition by celecoxib decreased PGE2 and increased collagen expression in Tg-HSCs. In conclusion, GnT-V prevented steatohepatitis progression through modulating lymphocyte and HSC functions.  相似文献   

9.
Decorin is a small leucine-rich extracellular matrix proteoglycan composed of a core protein with a single glycosaminoglycan (GAG) chain near the N-terminus and N-glycosylated at three potential sites. Decorin is involved in the regulation of formation and organization of collagen fibrils, modulation of the activity of growth factors such as transforming growth factor β (TGF-β), and exerts other effects on cell proliferation and behavior. Increasing evidences show that decorin plays an important role in fibrogenesis by regulating TGF-β, a key stimulator of fibrosis, and by directly modulating the degradation of extracellular matrix (ECM) from activated hepatic stellate cells (HSCs). In this study, the core protein of human decorin was cloned and expressed in Escherichia coli. The purified recombinant human decorin (rhDecorin) significantly inhibited the proliferation of LX-2 cells, a human HSC cell line, stimulated by TGF-β1. RT-PCR result showed that the expression of metalloproteinase-2 (MMP-2) and tissue inhibitor of metalloproteinase-1 (TIMP-1) were reduced by rhDecorin in LX-2 cells stimulated by TGF-β1. Furthermore, the protein expression of smooth muscle-α-actin (α-SMA), collagen type III and phosphorylated Smad2 (p-Smad2) was significantly decreased in the presence of rhDecorin. rhDecorin also reduced fibrillogenesis of collagen type I in a dose-dependent manner. Gene expression profiles of LX-2 cells stimulated by TGF-β1 in the presence and the absence of rhDecorin were obtained by using cDNA microarray technique and differentially expressed genes were identified to provide further insight into the molecular action mechanism of decorin on LX-2 cells.  相似文献   

10.
11.
The discovery and optimization of a series of potent PPARδ full agonists with partial agonistic activity against PPARγ is described.  相似文献   

12.
Hepatic stellate cells (HSCs) have a critical role in liver physiology, and in the pathogenesis of liver inflammation and fibrosis. Here, we investigated the interplay between leukotrienes (LT) and TGF-β in the activation mechanisms of HSCs from schistosomal granulomas (GR-HSCs). First, we demonstrated that GR-HSCs express 5-lipoxygenase (5-LO), as detected by immunolocalization in whole cells and confirmed in cell lysates through western blotting and by mRNA expression through RT-PCR. Moreover, mRNA expression of 5-LO activating protein (FLAP) and LTC4-synthase was also documented, indicating that GR-HSCs have the molecular machinery required for LT synthesis. Morphological analysis of osmium and Oil-Red O-stained HSC revealed large numbers of small lipid droplets (also known as lipid bodies). We observed co-localization of lipid droplet protein marker (ADRP) and 5-LO by immunofluorescence microscopy. We demonstrated that GR-HSCs were able to spontaneously release cysteinyl-LTs (CysLTs), but not LTB4, into culture supernatants. CysLT production was highly enhanced after TGF-β-stimulation. Moreover, the 5-LO inhibitor zileuton and 5-LO gene deletion were able to inhibit the TGF-β-stimulated proliferation of GR-HSCs, suggesting a role for LTs in HSC activation. Here, we extend the immunoregulatory function of HSC by demonstrating that HSC from liver granulomas of schistosome-infected mouse are able to release Cys-LTs in a TGF-β-regulated manner, potentially impacting pathogenesis and liver fibrosis in schistosomiasis.  相似文献   

13.
14.
Liver fibrosis is an active process that involves changes in cell-cell and cell-extracellular matrix (ECM) interaction. Secreted protein, acidic and rich in cysteine (SPARC) is an ECM protein with many biological functions that is overexpressed in cirrhotic livers and upregulated in activated hepatic stellate cells (aHSCs). We have recently shown that SPARC downregulation ameliorates liver fibrosis in vivo. To uncover the cellular mechanisms involved, we have specifically knocked down SPARC in two aHSC lines [the CFSC-2G (rat) and the LX-2 (human)] and in primary cultured rat aHSCs. Transient downregulation of SPARC in hepatic stellate cells (HSCs) did not affect their proliferation and had only minor effects on apoptosis. However, SPARC knockdown increased HSC adhesion to fibronectin and significantly decreased their migration toward PDFG-BB and TGF-β(1). Interestingly, TGF-β(1) secretion by HSCs was reduced following SPARC small interfering RNA (siRNA) treatment, and preincubation with TGF-β(1) restored the migratory capacity of SPARC siRNA-treated cells through mechanisms partially independent from TGF-β(1)-mediated induction of SPARC expression; thus SPARC knockdown seems to exert its effects on HSCs partially through modulation of TGF-β(1) expression levels. Importantly, collagen-I mRNA expression was reduced in SPARC siRNA-transfected HSCs. Consistent with previous results, SPARC knockdown in aHSCs was associated with altered F-actin expression patterns and deregulation of key ECM and cell adhesion molecules, i.e., downregulation of N-cadherin and upregulation of E-cadherin. Our data together suggest that the upregulation of SPARC previously reported for aHSCs partially mediates profibrogenic activities of TGF-β(1) and PDGF-BB and identify SPARC as a potential therapeutic target for liver fibrosis.  相似文献   

15.

Background

Carotenoids have been found to play roles in the prevention and therapy of some cancers which PPARγ was also discovered to be involved in. The present studies were directed to determine the inhibitory effects of carotenoids in combination with rosiglitazone, a synthetic PPARγ agonist, on K562 cell proliferation and elucidate the contribution of PPARγ-dependent pathway to cell proliferation suppression.

Methods

The effects of carotenoid and rosiglitazone combination on K562 cell proliferation were evaluated by trypan blue dye exclusion assay and MTT assay. When PPARγ has been inhibited by GW9662 and siRNA, cycle-related regulator expression in K562 cells treated with carotenoid and rosiglitazone combination was analyzed by Western blotting.

Results

Rosiglitazone inhibited K562 cell proliferation and augmented the inhibitory effects of carotenoids on the cell proliferation greatly. Specific PPARγ inhibition attenuated the cell growth suppression induced by carotenoid and rosiglitazone combination. GW9662 pre-treatment attenuated the enhanced up-regulation of PPARγ expression caused by the combination treatment. Moreover, GW9662 and PPARγ siRNA also significantly attenuated the up-regulation of p21 and down-regulation of cyclin D1 caused by carotenoids and rosiglitazone.

Conclusions

PPARγ signaling pathway, via stimulating p21 and inhibiting cyclin D1, may play an important role in the anti-proliferative effects of carotenoid and rosiglitazone combination on K562 cells.

General significance

Carotenoids in combination with rosiglitazone are hopeful to provide attractive dietary or supplementation-based and pharmaceutical strategies to treat cancer diseases.  相似文献   

16.
Liver damage induces hepatic stellate cells (HSC) activation, characterised by a fibrogenic, proliferative and migratory phenotype. Activated HSC are mainly regulated by transforming growth factor β 1 (TGFβ1), which increases the production of extracellular matrix proteins (e.g. collagen-I) promoting the progression of hepatic fibrosis. AGAP2 (ArfGAP with GTPase domain, ankyrin repeat and PH domain 2) is a GTPase/GTP-activating protein involved in the actin remodelling system and receptor recycling. In the present work the role of AGAP2 in human HSC in response to TGFβ1 was investigated. LX-2 HSC were transfected with AGAP2 siRNA and treated with TGFβ1. AGAP2 knockdown prevented to some extent the proliferative and migratory TGFβ1-induced capacities of LX-2 cells. An array focused on human fibrosis revealed that AGAP2 knockdown partially prevented TGFβ1-mediated gene expression of the fibrogenic genes ACTA2, COL1A2, EDN1, INHBE, LOX, PDGFB, TGFΒ12, while favored the expression of CXCR4, IL1A, MMP1, MMP3 and MMP9 genes. Furthermore, TGFβ1 induced AGAP2 promoter activation and its protein expression in LX-2. Moreover, AGAP2 protein levels were significantly increased in liver samples from rats with thioacetamide-induced fibrosis. In addition, AGAP2 silencing affected TGFβ1-receptor 2 (TGFR2) trafficking in U2OS cells, blocking its effective recycling to the membrane. AGAP2 silencing in LX-2 cells prevented the TGFβ1-induced increase of collagen-I protein levels, while its overexpression enhanced collagen-I protein expression in the presence or absence of the cytokine. AGAP2 overexpression also increased focal adhesion kinase (FAK) phosphorylated levels in LX-2 cells. FAK and MEK1 inhibitors prevented the increase of collagen-I expression caused by TGFβ1 in LX-2 overexpressing AGAP2. In summary, the present work shows for the first time, that AGAP2 is a potential new target involved in TGFβ1 signalling, contributing to the progression of hepatic fibrosis.  相似文献   

17.
18.
Liver regeneration involves not only hepatocyte replication but progenitor aggregation and scarring. Partial hepatectomy (PH), an established model for liver regeneration, reactivates transforming growth factor-β (TGF-β) signaling. Hepatic stellate cells (HSCs) are primarily responding cells for TGF-β and resident in stem cell niche. In the current study, PH mice were treated with SB-431542, an inhibitor of TGF-β Type I receptor, aiming to address the role of TGF-β signaling on the fate determination of HSCs during liver regeneration. After PH, control mice exhibited HSCs activation, progenitor cells accumulation, and a fraction of HSCs acquired the phenotype of hepatocyte or cholangiocyte. Blocking TGF-β signaling delayed proliferation, impaired progenitor response, and scarring repair. In SB-431542 group, merely no HSCs were found coexpressed progenitor makers, such as SOX9 and AFP. Inhibition of TGF-β pathway disturbed the epithelial-mesenchymal transitions and diminished the nuclear accumulation of β-catenin as well as the expression of cytochrome P450 2E1 in HSC during liver regeneration. We identify a key role of TGF-β signaling on promoting HSC transition, which subsequently becomes progenitor for generating liver epithelial cells after PH. This process might interact with an acknowledged stem cell function signaling, Wnt/β-catenin.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号