首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Ten strains of aerobic methanotrophic bacteria represented by halophilic neutrophiles or halotolerant alkaliphiles were isolated from saline and alkaline lakes of southeast Siberia, Mongolia, Africa, and North America. Based on analysis of the nucleotide sequences of 16S rRNA gene and the pmoA gene encoding particulate methane monooxygenase, the isolates were classified as Methylomicrobium alcaliphilum, Methylomicrobium buryatense, and Methylobacter marinus. All strains of the genus Methylomicrobium were shown to synthesize glycoprotein S-layers located on the cell surface with hexagonal symmetry (p6) as a monolayer of cup-shaped structures or fine “inverted” conical structures and as plates consisting of protein subunits with inclined (p2) symmetry. During adaptation to the high salinity of the medium, isolated methanotrophs synthesize osmoprotectants: ectoine, sucrose, and glutamate. The ectC gene encoding ectoine synthase (EctC) was identified in six methanotrophic strains. Phylogenetic analysis of translated amino acid sequence of the ectC gene fragment suggests lateral transfer of the genes of ectoine synthesis as the most probable way for methanotrophs to acquire resistance to high external salinity.  相似文献   

2.
L-2,4-Diaminobutyrate (DAB) acetyltransferase (DABAcT) catalyzes one of the key reactions of biosynthesis of the bacterial osmoprotectant ectoine--acetylation of L-2,4-DAB yielding Ngamma-acetyl-2,4-DAB. Gene ectA encoding DABAcT was cloned from DNA of the halotolerant methanotroph Methylomicrobium alcaliphilum 20Z and expressed in Escherichia coli with an additional six His residues at the C-terminus. Homogeneous enzyme preparation with specific activity 200 U/mg was obtained by affinity metal-chelating chromatography. DABAcT was found to be a homodimer with molecular mass 40 kD. The enzyme is most active at pH 9.5 and 20 degrees C, and its activity increased threefold in the presence of 0.1-0.2 M NaCl or 0.2 M KCl. The Km values of recombinant DABAcT measured at the optimal pH and temperature in the presence of 0.2 M KCl were 460 and 36.6 microM for L-2,4-DAB and acetyl-CoA, respectively. The enzyme is specific for L-2,4-DAB and acetyl-CoA and is also active against propionyl-CoA (20%). Zn2+ and Cd2+ at 1 mM concentration completely inhibit the recombinant enzyme; 10 mM ATP inhibits 26% of the enzyme activity, whereas EDTA, o-phenanthroline, ADP, NAD(P), and NAD(P)H do not significantly effect the enzyme activity. The possible participation of DABAcT in regulation of ectoine biosynthesis in M. alcaliphilum 20Z is discussed.  相似文献   

3.
The methanotrophic bacterium Methylomicrobium album BG8 uses methane as a sole source of carbon and energy. This bacterium forms an extensive intracytoplasmic membrane. The first enzymes of the methane oxidation pathway are the membrane-bound particulate methane monooxygenase and the periplasmic methanol dehydrogenase. Immunoelectron microscopy with specific antibodies was used to localize these enzymes to the intracytoplasmic membrane.  相似文献   

4.
Methanotrophic bacteria are widespread and use methane as a sole carbon and energy source. They also play a crucial role in marine ecosystems by preventing the escape of methane into the atmosphere from diverse methane sources, such as methane seeps and hydrothermal vents. Despite their importance for methane carbon cycling, relatively few marine methanotrophic bacteria have been isolated and studied at the genomic level. Herein, we report the genome of a marine methanotrophic member of the genus Methylomicrobium, metagenome-assembled genome (MAG) wino1, which was obtained through enrichment using methane as the sole carbon source. Phylogenetic analysis based on 16S rRNA sequences and comparison of pmoA genes supported the close relationship of MAG-wino1 to the genus Methylomicrobium and it possessed a genome of 5.06 Mb encoding many specialized methanotrophic genes. A comparison of MAG-wino1 with the genomes of other strains (Methylomicrobium alcaliphilum 20ZT and Methylomicrobium buryatense 5G) showed that genes (e.g. ectABC, ask, and mscLS) involved in the accumulation of compatible solutes required for survival in marine environments might be conserved. Methane utilization genes, including methanol dehydrogenase, and key enzymes related to ribulose monophosphate (RuMP) metabolism were identified. The wino1 genome harbored nitrogen fixation, urease, urea and nitrate transporter genes involved in the exploitation of nitrogen sources. Poly-β-hydroxybutyrate degradation and glycogen synthesis-related genes may facilitate survival under nutrient-limiting conditions. Additionally, genome analysis revealed three dominant taxa in the enrichment culture, methanotroph Methylomicrobium sp., methylotroph Methyloceanibacter sp., and non-methylotroph Labrenzia sp., which provided insights into microbial associations in marine sediments.  相似文献   

5.
A protein with an apparent molecular mass of 46 kDa was detected as the major polypeptide in the culture medium of the biotechnologically important methanotrophic bacterium Methylococcus capsulatus (Bath). The protein cross-reacted with polyclonal antibodies raised against the outer-membrane-associated protein MopE. The antiserum was used to identify a positive clone from a lambda gt11 library. The nucleotide sequence determined for the clone demonstrated that MopE and the secreted protein are encoded by the same gene, and that the secreted protein represents an N-terminally truncated form of MopE. By using monospecific antibodies against MopE in immunogold electron microscopy, the protein was localized at the cell surface and cell periphery. The mopE gene was expressed in Escherichia coli. The MopE protein synthesized was found in the periplasmic space of E. coli. No protein with sequence similarity over the entire length of MopE was detected in the databases, but some sequence similarity to the copper-repressible CorA protein of the methanotroph Methylomicrobium albus (Berson and Lidstrom 1997) was observed for the C-terminal region of MopE.  相似文献   

6.
Structural and functional characteristics of the regular glycoprotein layers in prokaryotes are analyzed with a special emphasis on aerobic methanotrophic bacteria. S-Layers are present at the surfaces of Methylococcus, Methylothermus, and Methylomicrobium cells. Different Methylomicrobium species either synthesize S-layers with planar (p2, p4) symmetry or form cup-shaped or conical structures with hexagonal (p6) symmetry. A unique, copper-binding polypeptide ‘CorA’/MopE (27/45 kDa), which is coexpressed with the diheme periplasmic cytochrome c peroxidase ‘CorB’/Mca (80 kDa) was found in Methylomicrobium album BG8, Methylomicrobium alcaliphilum 20Z, and Methylococcus capsulatus Bath. This tandem of the surface proteins is functionally analogous to a new siderophore: methanobactin. Importantly, no ‘CorA’/MopE homologue was found in methanotrophs not forming S-layers. The role of surface proteins in copper metabolism and initial methane oxidation is discussed.  相似文献   

7.
A number of vectors were constructed based on the plasmid from the broad range of pMHA200 hosts. Also, the expression of some key genes of the haloalkalitolerant methanotroph Methylomicrobium alcaliphilum 20Z was studied. The activities of the promoter regions of genes for hexulose phosphate synthase, glutamine synthetase, and glucokinase, as well as the promoter of the ectABC-ask operon, which encodes enzymes for osmoprotectant ectoine biosynthesis, were evaluated with the use of the gfp gene; the evaluation was proven to be ineffective. Conversely, glucokinase and a heterologous enzyme of chloramphenicol acetyltransferase were useful for the evaluation of promoter activity. In M. alcaliphilum 20Z cells, the expression level of chloramphenicol acetyltransferase transcribed from the methanol dehydrogenase promoter was higher as compared with that of glucokinase. This seems to be due to a regulatory mechanism for homologous protein expression. The introduction of a synthetic nucleotide sequence forming the secondary structure in the 5′ untranslated region of the glucokinase mRNA resulted in an increase of this enzyme level. This is the first attempt to use M. alcaliphilum 20Z for homo- and heterologous protein expression.  相似文献   

8.
Detection and quantitative analysis of ectoine in bacterial biomass were performed by normal-phase high performance liquid chromatography with ultraviolet detection at 230 nm. Quantitative analysis was not hindered by glutamate and sucrose accumulation in bacteria. Measurement of ectoine concentration in haloalkaliphilic methanotrophs Methylobacter marinus 7C and Methylomicrobium alcaliphilum 5S showed that ectoine accumulation reached maximum (5 and 12% of dry cell weight) in the presence of NaCl at concentrations of 4 and 6%, respectively.  相似文献   

9.
Obligate methanotrophic bacteria can utilize methane, an inexpensive carbon feedstock, as a sole energy and carbon substrate, thus are considered as the only nature-provided biocatalyst for sustainable biomanufacturing of fuels and chemicals from methane. To address the limitation of native C1 metabolism of obligate type I methanotrophs, we proposed a novel platform strain that can utilize methane and multi-carbon substrates, such as glycerol, simultaneously to boost growth rates and chemical production in Methylotuvimicrobium alcaliphilum 20Z. To demonstrate the uses of this concept, we reconstructed a 2,3-butanediol biosynthetic pathway and achieved a fourfold higher titer of 2,3-butanediol production by co-utilizing methane and glycerol compared with that of methanotrophic growth. In addition, we reported the creation of a methanotrophic biocatalyst for one-step bioconversion of methane to methanol in which glycerol was used for cell growth, and methane was mainly used for methanol production. After the deletion of genes encoding methanol dehydrogenase (MDH), 11.6 mM methanol was obtained after 72 h using living cells in the absence of any chemical inhibitors of MDH and exogenous NADH source. A further improvement of this bioconversion was attained by using resting cells with a significantly increased titre of 76 mM methanol after 3.5 h with the supply of 40 mM formate. The work presented here provides a novel framework for a variety of approaches in methane-based biomanufacturing.  相似文献   

10.
In the aerobic methanotrophic bacteria Methylomicrobium alcaliphilum 20Z, Methylococcus capsulatus Bath, and Methylosinus trichosporium OB3b, the biochemical properties of hydroxypyruvate reductase (Hpr), an indicator enzyme of the serine pathway for assimilation of reduced C1-compounds, were comparatively analyzed. The recombinant Hpr obtained by cloning and heterologous expression of the hpr gene in Escherichia coli catalyzed NAD(P)H-dependent reduction of hydroxypyruvate or glyoxylate, but did not catalyze the reverse reactions of D-glycerate or glycolate oxidation. The absence of the glycerate dehydrogenase activity in the methanotrophic Hpr confirmed a key role of the enzyme in utilization of C1-compounds via the serine cycle. The enzyme from Ms. trichosporium OB3b realizing the serine cycle as a sole assimilation pathway had much higher special activity and affinity in comparison to Hpr from Mm. alcaliphilum 20Z and Mc. capsulatus Bath assimilating carbon predominantly via the ribulose monophosphate (RuMP) cycle. The hpr gene was found as part of gene clusters coding the serine cycle enzymes in all sequenced methanotrophic genomes except the representatives of the Verrucomicrobia phylum. Phylogenetic analyses revealed two types of Hpr: (i) Hpr of methanotrophs belonging to the Gammaproteobacteria class, which use the serine cycle along with the RuMP cycle, as well as of non-methylotrophic bacteria belonging to the Alphaproteobacteria class; (ii) Hpr of methylotrophs from Alpha- and Betaproteobacteria classes that use only the serine cycle and of non-methylotrophic representatives of Betaproteobacteria. The putative role and origin of hydroxypyruvate reductase in methanotrophs are discussed.  相似文献   

11.
Methanotrophic bacteria play a crucial role in regulating the emission of CH4 from rice fields into the atmosphere. We investigated the CH4 oxidation activity together with the diversity of methanotrophic bacteria in ten rice field soils from different geographic locations. Upon incubation of aerated soil slurries under 7% CH4, rates of CH4 oxidation increased after a lag phase of 1-4 days and reached values of 3-10 micromol d(-1) g-dw(-1) soil. The methanotrophic community was assayed by retrieval of the pmoA gene which encodes the a subunit of the particulate methane monooxygenase. After extraction of DNA from actively CH4-oxidizing soil samples and PCR-amplification of the pmoA, the community was analyzed by Denaturant Gradient Gel Electrophoresis (DGGE) and Terminal Restriction Fragment Length Polymorphism (T-RFLP). DGGE bands were excised, the pmoA re-amplified, sequenced and the encoded amino acid sequence comparatively analyzed by phylogenetic treeing. The analyses allowed the detection of pmoA sequences related to the following methanotrophic genera: the type-I methanotrophs Methylobacter, Methylomicrobium, Methylococcus and Methylocaldum, and the type-II methanotrophs Methylocystis and Methylosinus. T-RFLP analysis detected a similar diversity, but type-II pmoA more frequently than DGGE. All soils but one contained type-II in addition to type-I methanotrophs. Type-I Methylomonas was not detected at all. Different combinations of methanotrophic genera were detected in the different soils. However, there was no obvious geographic pattern of the distribution of methanotrophs.  相似文献   

12.
Methanotrophic bacteria play a major role in the global carbon cycle, degrade xenobiotic pollutants, and have the potential for a variety of biotechnological applications. To facilitate ecological studies of these important organisms, we developed a suite of oligonucleotide probes for quantitative analysis of methanotroph-specific 16S rRNA from environmental samples. Two probes target methanotrophs in the family Methylocystaceae (type II methanotrophs) as a group. No oligonucleotide signatures that distinguish between the two genera in this family, Methylocystis and Methylosinus, were identified. Two other probes target, as a single group, a majority of the known methanotrophs belonging to the family Methylococcaceae (type I/X methanotrophs). The remaining probes target members of individual genera of the Methylococcaceae, including Methylobacter, Methylomonas, Methylomicrobium, Methylococcus, and Methylocaldum. One of the family-level probes also covers all methanotrophic endosymbionts of marine mollusks for which 16S rRNA sequences have been published. The two known species of the newly described genus Methylosarcina gen. nov. are covered by a probe that otherwise targets only members of the closely related genus Methylomicrobium. None of the probes covers strains of the newly proposed genera Methylocella and "Methylothermus," which are polyphyletic with respect to the recognized methanotrophic families. Empirically determined midpoint dissociation temperatures were 49 to 57 degrees C for all probes. In dot blot screening against RNA from positive- and negative-control strains, the probes were specific to their intended targets. The broad coverage and high degree of specificity of this new suite of probes will provide more detailed, quantitative information about the community structure of methanotrophs in environmental samples than was previously available.  相似文献   

13.
Enterococcus hirae ATCC 9790 is a Gram-positive lactic acid bacterium that has been used in basic research for over 4 decades. Here we report the sequence and annotation of the 2.8-Mb genome of E. hirae and its endemic 29-kb plasmid pTG9790.  相似文献   

14.
The family Hyphomonadaceae within the Alphaproteobacteria is largely comprised of bacteria isolated from marine environments with striking morphologies and an unusual mode of cell growth. Here, we report the complete genome sequence Hirschia baltica, which is only the second a member of the Hyphomonadaceae with a published genome sequence. H. baltica is of special interest because it has a dimorphic life cycle and is a stalked, budding bacterium. The 3,455,622 bp long chromosome and 84,492 bp plasmid with a total of 3,222 protein-coding and 44 RNA genes were sequenced as part of the DOE Joint Genome Institute Program CSP 2008.  相似文献   

15.
Recent sequencing of the genome and proteomic analysis of a model aerobic methanotrophic bacterium, Methylococcus capsulatus (Bath) has revealed a highly versatile metabolic potential. In parallel, environmental genomics has provided glimpses into anaerobic methane oxidation by certain archaea, further supporting the hypothesis of reverse methanogenesis.  相似文献   

16.
The PCR analysis of DNA extracted from soil samples taken in Russian northern taiga and subarctic tundra showed that the DNA extracts contain genes specific to methanotrophic bacteria, i.e., the mmoX gene encoding the conserved alpha-subunit of the hydroxylase component of soluble methane monooxygenase, the pmoA gene encoding the alpha-subunit of particulate methane monooxygenase, and the mxaF gene encoding the alpha-subunit of methanol dehydrogenase. PCR analysis with group-specific primers also showed that methanotrophic bacteria in the northern taiga and subarctic tundra soils are essentially represented by the type I genera Methylobacter, Methylomonas, Methylosphaera, and Methylomicrobium and that some soil samples contain type II methanotrophs close to members of the genera Methylosinus and Methylocystis. The electron microscopic examination of enrichment cultures obtained from the soil samples confirmed the presence of methanotrophic bacteria in the ecosystems studied and showed that the methanotrophs contain only small amounts of intracytoplasmic membranes.  相似文献   

17.
Lactobacillus salivarius is a well-known lactic acid bacterium to which increasing attention has been paid recently for use as probiotics for humans and animals. L. salivarius NIAS840 was first isolated from broiler chicken feces, displaying antimicrobial activities against multidrug-resistant Staphylococcus aureus and Salmonella enterica serovar Typhimurium. Here, we report the genome sequence of L. salivarius NIAS840 (2,046,557 bp) including a small plasmid and two megaplasmids.  相似文献   

18.
Pelagibacterium halotolerans B2(T) is a marine halotolerant bacterium that was isolated from a seawater sample collected from the East China Sea. Here, we present the complete genome sequence of the type strain P. halotolerans B2(T), which consists of one chromosome (3,944,837 bp; 61.4% G+C content) and one plasmid (4,050 bp; 56.1% G+C content). This is the first complete genome of a member of the Pelagibacterium genus.  相似文献   

19.
Endophytes live inside plant tissues without causing any harm and may even benefit plants. Here, we provide the high-quality genome sequence of Burkholderia sp. strain KJ006, an endophytic bacterium of rice with antifungal activity. The 6.6-Mb genome, consisting of three chromosomes and a single plasmid, contains genes related to plant growth promotion or degradation of aromatic compounds.  相似文献   

20.
分别以卡介苗(BCG)和EB病毒融合基因cDNA为模板,通过PCR扩增得到139bp的BCG-Ag85B信号肽序列和2291bp的Z2A基因序列。将BCG-Ag85B信号肽序列与大肠杆菌-卡介苗穿梭表达载体pMV261重组,得到重组质粒pMVS。再将EB病毒融合基因序列Z2A亚克隆至pMVS中,得到重组质粒pMVZ2A,电转化导入BCG。SDS-PAGE分析结果表明,构建的重组质粒pMVZ2A经双酶切、PCR扩增及测序鉴定证实,克隆基因BCG-Ag85B信号肽和Z2A正确插入载体pMV261,电转化导入BCG,能够在BCG中分泌表达。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号