首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The CHO cell line has achieved considerable commercial importance as a vehicle for the production of human therapeutic proteins, but is known to lack a functional copy of the gene coding for 2,6-sialyltransferase (EC 2.4.99.1). The cDNA for rat 2,6-ST was expressed in a recombinant CHO cell line making interferon-, using a novel in vitro amplification vector. The enzyme was expressed efficiently, and resulted in up to 60% of the total sialic acids on interferon- being linked in the 2,6-conformation. This sialic acid linkage distribution was more akin to that seen in natural human glycoproteins. In the most successful cell clones, expression of 2,6-sialyltransferase improved the overall level of sialylation by up to 56%, and had no adverse effects on cell growth, IFN- productivity or other aspects of IFN- glycosylation. These experiments demonstrate how the glycosylation machinery of rodent cells can be genetically manipulated to replicate human tissues.Abbreviations AT-III antithrombin-III - CHO Chinese hamster ovary - dhfr dihydrofolate reductase - EPO erythropoietin - IFN- human interferon- - NEO neomycin - NeuAc N-acetylneuraminic acid - NeuGc N-glycolylneuraminic acid - ST sialyltransferase - tPA tissue plasminogen activator  相似文献   

2.
Human alpha-1-antitrypsin (α1AT) is a glycoprotein with protease inhibitor activity protecting tissues from degradation. Patients with inherited α1AT deficiency are treated with native α1AT (nAT) purified from human plasma. In the present study, recombinant α1AT (rAT) was produced in Chinese hamster ovary (CHO) cells and their glycosylation patterns, inhibitory activity and in vivo half-life were compared with those of nAT. A peptide mapping analysis employing a deglycosylation reaction confirmed full occupancy of all three glycosylation sites and the equivalency of rAT and nAT in terms of the protein level. N-glycan profiles revealed that rAT contained 10 glycan structures ranging from bi-antennary to tetra-antennary complex-type glycans while nAT displayed six peaks comprising majorly bi-antennary glycans and a small portion of tri-antennary glycans. In addition, most of the rAT glycans were shown to have only core α(1?-?6)-fucose without terminal fucosylation, whereas only minor portions of the nAT glycans contained core or Lewis X-type fucose. As expected, all sialylated glycans of rAT were found to have α(2?-?3)-linked sialic acids, which was in sharp contrast to those of nAT, which had mostly α(2?-?6)-linked sialic acids. However, the degree of sialylation of rAT was comparable to that of nAT, which was also supported by an isoelectric focusing gel analysis. Despite the differences in the glycosylation patterns, both α1ATs showed nearly equivalent inhibitory activity in enzyme assays and serum half-lives in a pharmacokinetic experiment. These results suggest that rAT produced in CHO cells would be a good alternative to nAT derived from human plasma.  相似文献   

3.
Somatic cell hybrids were derived from the fusion of Chinese hamster ovary (CHO) cells and Syrian hamster melanoma cells (2E). These two cell lines had previously been shown to differ in their response to the induction of mutations and sister-chromatid exchanges (SCEs) by 5-bromo-2′-deoxyuridine (BrdUrd) (Kaufman, 1987). The parental cells and a number of representative, independent hybrid clones were tested for their response to both the INC and REP mutagenesis protocols. INC mutagenesis involves the incorporation of BrdUrd into DNA under conditions of deoxyribonucleoside triphosphate (dNTP) pool imbalance, while REP mutagenesis involves the replication of 5-bromouracil-substituted DNA in the presence of dNTP pool imbalance. When tested for the toxic effects of high concentrations of BrdUrd and for the induction of mutations by the INC protocol, the hybrid clones all expressed the 2E phenotype, i.e., sensitivity to relatively low concentrations of BrdUrd and thymidine for the induction of mutations, dNTP pool perturbation, and the toxic effects of BrdUrd. When the hybrid clones were tested for the induction of mutations and SCEs by the REP protocol, it was found that they expressed the 2E phenotype for the induction of mutations and the CHO phenotype for the induction of SCEs. Thus, various aspects of the 2E phenotype, such as high mutation frequencies associated with large dNTP pool perturbations, appeared to be dominantly expressed in the cell hybrids, while the lack of induction of SCEs by these mutagenic conditions in 2E cells was found to be a recessive characteristic.  相似文献   

4.
Although vinculin is used frequently as a marker for integrin-mediated focal adhesion complexes, how it regulates the activation of integrin is mostly unknown. In this study, we examined whether vinculin would activate integrin in Chinese hamster ovary (CHO) cells expressing human integrin αIIbβ3. Silencing of vinculin by lentiviral transduction with a short hairpin RNA sequence affected the binding of PAC-1 (an antibody recognizing activated human αIIbβ3) to a constitutively active form of αIIbβ3 (α6Bβ3) expressed on CHO cells, while its inhibitory effects were much weaker than those of talin-1. Overexpression of an active form of vinculin without intramolecular interactions, but not the full length one, induced PAC-1 binding to native αIIbβ3 expressed on CHO cells in a manner dependent on talin-1. On the other hand, silencing of talin-1, but not vinculin, failed to induce cell spreading of α6Bβ3-CHO cells on fibrinogen, even in the presence of PT 25-2, a monoclonal antibody that activates αIIbβ3. Thus, an active form of vinculin could induce αIIbβ3 inside-out signaling through the actions of talin-1, while vinculin was dispensable for outside-in signaling.  相似文献   

5.
Cycloheximide (CHM) or puromycin (PUR) added for 2 h before heating at 43 degrees C followed by either PUR or CHM during heat greatly protected cells from heat killing. This protection increased with inhibition of protein synthesis. Since treatment with a drug both before and during heating was required for heat protection, and since one drug could be exchanged for the other after the 2-h pretreatment without affecting the heat protection, a common mode of action involving inhibition of protein synthesis is suggested for the two drugs. Drug treatment reduced the synthesis of heat-shock proteins (HSPs) as studied by one-dimensional gel electrophoresis by 80-98% relative to 37 degrees C untreated controls. Synthesis of large molecules (greater than 30 kDa) was preferentially inhibited by PUR but not by CHM. Also for CHM, but not for PUR treatment, a 42 kDa band appeared along with a great reduction in the 43 kDa actin band during CHM treatment at both 37 and 43 degrees C. Furthermore, during CHM or PUR treatment, incorporation of [35S]methionine into HSP families 70, 87, or 110 was not increased relative to incorporation into total protein. However, synthesis of the 70 kDa HSP family was selectively suppressed when cells were incubated at 37 degrees C after CHM treatment, but when cells were incubated at 37 degrees C after treatment at 43 degrees C with CHM, synthesis of the 70 kDa HSP family resumed. When cells were labeled for 3 days, there was no preferential accumulation or turnover of HSP families during heating with or without CHM. Therefore, heat protection caused by treatment with CHM or PUR apparently involves a common mode of action not associated with changes in either total levels or synthesis of HSP families during drug treatment before and during heating. The significance of the changes observed in the synthesis of the HSP 70 family after heat is unknown. As thermotolerance developed during 5 h at 42 degrees C without drugs, synthesis of HSP families 70, 87, and 110, as studied with one-dimensional gels, increased 1.4-fold relative to synthesis of total protein, but compared to HSP families in cells labeled for 5 h at 37 degrees C incorporation was reduced by 40%. The increase of unique HSPs, if studied with two-dimensional gels, would probably be much greater.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

6.
7.
Proteolytic cleavage of recombinant human interferon- (IFN-) expressed in Chinese hamster ovary (CHO) cells during batch fermentation has been monitored by mass spectrometric peptide mapping. IFN- was purified from cell-free culture supernatant by immunoaffinity chromatography and cleaved by endoprotease Asp-N. Peptide fragments were resolved by reverse-phase HPLC and identified by a combination of matrix-assisted laser desorption/ionization time-of-flight (MALDI-TOF) mass spectrometry (MS) and automated N-terminal peptide sequencing. Using this approach, a peptide was identified as the C-terminal fragment of the IFN- polypeptide. Analysis of this peptide by MS indicated that the recombinant IFN- polypeptide secreted by CHO cells was truncated by at least ten amino acids, initially at Gln133-Met134. No full length (143 amino acids) polypeptide molecules were observed at any stages of the fermentation. Additional proteolytic cleavages at basic amino acids N-terminal of Gln133 occurred during the later stages of the culture resulting in a heterogeneous IFN- polypeptide population with 'ragged' C-termini.  相似文献   

8.
Chinese hamster ovary (CHO) cells are widely used for the production of recombinant proteins for clinical use as well as academic research. They are particularly important for the production of glycoproteins where bacteria cannot be used. TGFβ1 is a potent cytokine highly conserved across species with multiple immunological and non-immunological effects. We have discovered that CHOK1, the CHO clone most commonly used by the pharmaceutical industry, constitutively secretes latent TGFβ1 and that this hamster TGFβ1 is active on human cells inducing profound immunological effects. As far as we are aware, the production of TGFβ1 by CHOK1 cells has not been reported before in the literature. As TGFβ1 exerts powerful and pleiotropic effects on diverse cell types, and as CHO cells are used to produce a large number of clinical and non-clinical products, our findings are highly relevant to studies that rely on recombinant proteins.  相似文献   

9.
10.
11.
The protective effects of polymer additives, including a group of viscosity-enhancing polymer poly-γ-glutamic acid (γPGA; 10, 50, and 500?kDa) and surface-active polymer Pluronic F68, on Chinese hamster ovary cells against damage due to shear stress were investigated in shake-flask cultures. The level of protection was dependent upon the molecular weight of γPGA and its concentration. When 0.05 or 0.075?% of 500?kDa γPGA was added, the cell growth and viability were almost equal to those of Pluronic F68 supplementation and were much higher than those of the control without additives. For the first time, we show that γPGA is another environmentally-friendly medium additive that can be used in place of Pluronic F68.  相似文献   

12.
Summary Recombinant tumor necrosis factor (rTNF; optimal dose 1000 U/ml) significantly increased the density of epidermal growth factor receptor (EGF-R) in three of four glioma cell lines in culture as determined by binding analysis of anti-EGF-R monoclonal antibody (mAb) 425. Since enhancement of EGF-R expression by rTNF- was inhibited when cells were treated with the protein synthesis inhibitor cycloheximide, the effects of rTNF may be protein-synthesis-dependent. The dose of rTNF that was optimal for up-regulation of EGF-R on glioma cells did not inhibit the growth of these cells.125I-labeled mAb 425 lysed glioma cells in culture following its internalization into the cells. After glioma cells had been treated with rTNF, the growth-inhibitory effects of the mAb were significantly enhanced, probably a reflection of the increase in EGF-R density on the tumor cell surfaces. The rTNF effects were specific to the EGF-R and did not affect unrelated glioma-associated antigens. In our previous clinical trials,125I-labeled mAb 425 showed immunotherapeutic effects in glioma patients. The present study provides the basis for considerations of combined immunotherapy of glioma patients with125I-labeled mAb 425 and rTNF.  相似文献   

13.
A fragment (residues His1-Val289) of the chain of human platelet glycoprotein Ib containing the von Willebrand factor and thrombin binding sites has been expressed in Chinese hamster ovary cells. The secreted soluble recombinant protein had an apparent molecular mass of 42 kD and reacted with a conformation-dependent monoclonal antibody that only binds to native GP Ib, thus demonstrating its proper folding. The rather broad band obtained after immobilization of the recombinant fragment on nitrocellulose could be resolved into a very sharp band of molecular weight of about 35 kD by growing the cells in the presence of tunicamycin, and inhibitor of N-linked glycosylation. The recombinant GP Ib fragments (with or without glycosylation) were purified by immunoaffinity chromatography. Both truncated forms bound vWF in the presence of botrocetin with comparable affinity as a proteolytic 42 kD fragment of purified human platelet GP Ib-IX. They were also retained on thrombin-Sepharose. We then selected a cell clone (B1) that produced over at least three months about 1.5 g of recombinant protein per million cells per day. Using this clone a large-scale production finally yielded milligram amounts of the functionally active recombinant human GP Ib fragment.Abbreviations ABTS 2.2-azino-di-(3-ethylbenzthiazoline sulphonate) - CHO Chinese hamster ovary - dhfr dihydrofolate reductase - GP Ib-IX glycoprotein Ib-IX complex - HEPES 4-(2-hydroxyethyl)-1-piperazineethanesulfonic acid - IEF isoelectric focusing - Ig immunoglobulin - mAb monoclonal antibody - MEM minimum essential medium - PMSF phenyl-methylsulfonyl fluoride - SDS sodium dodecyl sulfate - vWF von Willebrand factor  相似文献   

14.
Summary DNA base sequence changes induced by N-methyl-N-nitro-N-nitrosoguanidine (MNNG) mutagenesis have been determined for the Escherichia coli gpt gene stably incorporated in a chromosome of Chinese hamster ovary cells and in the chromosome of both growing and starving E. coli cells, instead of on a plasmid as in most previous studies. In the three cases, nearly all mutations were G: C to A: T transitions, with a 2-to 4-fold higher mutation rate, compared to other sites, at guanines flanked on the 5 side by another guanine. Mutagenic hot spots in these experiments were less prominent than in published results for MNNG mutagenesis of gpt and of other genes. A suggested explanation involves repair of O6meG. At low levels of mutagenic products, most are repaired and even small differences in the repair rates leads to large differences in the relative amounts of residual O6meG at various sites; in contrast, at high levels of mutagenic products there is little effect of repair on the distribution.Abbreviations MNNG N-methyl-N-nitro-N-nitrosoguanidine - MNU N-methyl-N-nitrosourea - O6meG O6-methylguanine - N7meG N7-methylguanine - CHO Chinese hamster ovary  相似文献   

15.
This study tested the effectiveness of laser biostimulation in small-scale cultures in vitro. We investigated the response of recombinant CHO cells, which are used for the production of monoclonal antibody, to low level laser radiation. The cells were irradiated using a 632.8 nm He–Ne laser in a continuous wave mode at different energy doses. We incubated the irradiated cells in small batch cultures and assessed their proliferation and productivity at various time intervals. Compared to untreated cells, the irradiated cells showed a significant increase in antibody production. Moreover, the results showed that laser irradiation did not affect viability and slightly enhanced proliferation rate.  相似文献   

16.
A non-human like glycosylation pattern in human recombinant glycoproteins expressed by animal cells may compromise their use as therapeutic drugs. In order to correct the CHO glycosylation machinery, a CHO cell line producing recombinant human interferon- (IFN) was transformed to replace the endogenous pseudogene with a functional copy of the enzyme 2,6-sialyltransferase (2,6-ST). Both the parental and the modified CHO cell line were propagated in serum-free batch culture with or without 1 mM sodium butyrate. Although Na-butyrate inhibited cell growth, IFN concentration was increased twofold. The IFN sialylation status was determined using linkage specific sialidases and HPLC. Under non- induced conditions, IFN expressed by 2,6-engineered cells contained 68% of the total sialic acids in the 2,6- conformation and the overall molar ratio of sialic acids to IFN was 2.3. Sodium butyrate addition increased twofold the molar ratio of total sialic acids to IFN and 82% of total sialic acids on IFN were in the 2,6-conformation. In contrast, no effect of the sodium butyrate was noticed on the sialylation of the IFN secreted by the 2,6-ST deficient parental cell line. This study deals for the first time with the effect of Na-butyrate on CHO cells engineered to produce human like sialylation.  相似文献   

17.
Bacterial sialyltransferases of the glycosyltransferase family GT-80 exhibit pronounced hydrolase activity toward CMP-activated sialyl donor substrates. Using in situ proton NMR, we show that hydrolysis of CMP-Neu5Ac by Pasteurella dagmatis α2,3-sialyltransferase (PdST) occurs with axial-to-equatorial inversion of the configuration at the anomeric center to release the α-Neu5Ac product. We propose a catalytic reaction through a single displacement-like mechanism where water replaces the sugar substrate as a sialyl group acceptor. PdST variants having His284 in the active site replaced by Asn, Asp or Tyr showed up to 104-fold reduced activity, but catalyzed CMP-Neu5Ac hydrolysis with analogous inverting stereochemistry. The proposed catalytic role of His284 in the PdST hydrolase mechanism is to facilitate the departure of the CMP leaving group.  相似文献   

18.
19.
Applied Microbiology and Biotechnology - Non-ribosomal peptide synthetases (NRPSs) are key enzymes in microorganisms for the assembly of peptide backbones of biologically and pharmacologically...  相似文献   

20.
Apoptosis in B cells is induced through the B cell antigen receptor (BCR) and affects the sialic acid recognition molecules on B cells. We investigated the effects of 1-acid glycoprotein (AGP), which mainly contains 2,6-linked sialic acid, on anti-IgM antibody (Ab)-induced apoptosis in Ramos cells, which are derived from Burkitt's lymphoma. When Ramos cells were incubated with anti-IgM-Ab in plates coated with AGP, neuraminidase-digested AGP (asAGP) or 2,3-sialylated AGP (2,3AGP), apoptosis was suppressed only in those coated with AGP. We also studied the effects of CD22, which is expressed on the surface of mature B cells and binds to sugar chains containing 2,6-linked sialic acid, with anti-CD22 monoclonal antibody (mAb). Anti-CD22mAb enhanced anti-IgM Ab-induced apoptosis in Ramos cells. These contradictory results suggested that the recognition molecules for 2,6-linked sialic acid on AGP, which inhibits B-cell apoptosis, is distinct from CD22, or that different binding domains of CD22 between 2,6-linked sialic acid and anti-CD22 mAb exert opposite functions of suppression or enhancement to anti-IgM Ab-induced B cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号