首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Brachypodium distachyon has emerged as a model plant for the improvement of grain crops such as wheat, barley and oats and for understanding basic biological processes to facilitate the development of grasses as superior energy crops. Brachypodium is also the first species of the grass subfamily Pooideae with a sequenced genome. For obtaining a better understanding of the mechanisms controlling male gametophyte development in B. distachyon, here we report the cellular changes during the stages of anther development, with special reference to the development of the anther wall. Brachypodium anthers are tetrasporangiate and follow the typical monocotyledonous-type anther wall formation pattern. Anther differentiation starts with the appearance of archesporial cells, which divide to generate primary parietal and primary sporogenous cells. The primary parietal cells form two secondary parietal layers. Later, the outer secondary parietal layer directly develops into the endothecium and the inner secondary parietal layer forms an outer middle layer and inner tapetum by periclinal division. The anther wall comprises an epidermis, endothecium, middle layer and the secretory-type tapetum. Major documented events of anther development include the degradation of a secretory-type tapetum and middle layer during the course of development and the rapid formation of U-shaped endothecial thickenings in the mature pollen grain stage. The tapetum undergoes degeneration at the tetrad stage and disintegrates completely at the bicellular stage of pollen development. The distribution of insoluble polysaccharides in the anther layers and connective tissue through progressive developmental stages suggests their role in the development of male gametophytes. Until sporogenous cell stage, the amount of insoluble polysaccharides in the anther wall was negligible. However, abundant levels of insoluble polysaccharides were observed during microspore mother cell and tetrad stages and gradually declined during the free microspore and vacuolated microspore stages to undetectable level at the mature stage. Thus, the cellular features in the development of anthers in B. distachyon share similarities with anther and pollen development of other members of Poaceae.  相似文献   

2.
七叶树小孢子发生及雄配子体发育研究   总被引:1,自引:0,他引:1  
用石蜡切片法观察了七叶树花药的发育过程.结果表明:(1)雄蕊花药四室,花药壁完全分化时,从外到内依次是表皮、药室内壁、中层和绒毡层,花药壁发育为基本型.表皮细胞1层,发育过程中始终存在;药室内壁在花药成熟时形成带状纤维层加厚;幼小花药壁的中层3~4层细胞,在花药发育成熟时退化消失;绒毡层1层细胞,发育类型为分泌型,小孢子母细胞减数分裂时绒毡层开始退化解体,花药成熟完全消失,仅剩1层绒毡层膜.每一花药中有多列雄性孢原细胞,发生于幼小花药表皮下方;(2)小孢子母细胞减数分裂为同时型,四分体多呈正四面体排列;减数分裂过程中,小孢子母细胞外方被胼胝质壁所包被,小孢子形成后胼胝质壁逐渐消失.成熟花粉二细胞型,外形呈圆三角状,具三孔沟.  相似文献   

3.
Potassium antimonate was used to locate Ca2+ in fertile and sterile anthers of a photoperiod-sensitive genic male-sterile rice (Oryza sativa L. japonica). During the development of fertile anthers, abundant calcium precipitates accumulated in the anther walls and on the surface of pollen grains and Ubish bodies at the late developmental stage of the microspore, but not in the cytoplasm of pollen grains. Following the accumulation of starch grains in pollen, calcium precipitates on pollen walls diminished and increased in parenchymatous cells of the connective tissue. In sterile anthers, calcium precipitates were abundant in the middle layer and endothecium, but not in the tapetum, as was found in fertile anthers. A special cell wall was observed between the tapetum and middle layer of sterile anthers that appeared to relate to distinctive calcium accumulation patterns and poor pollen wall formation in the loculi. The formation of different patterns of antimonate-induced calcium precipitates in the anthers of photoperiod-sensitive genic male-sterile rice indicates that anomalies in the distribution of calcium accumulation correlate with the failure of pollen development and pollen abortion. Received: 30 May 1997 / Accepted: 5 July 1997  相似文献   

4.
用常规石蜡切片技术和压片法对大百合小孢子发生和雄配子体发育进行观察。结果表明:花药4室,花药壁由表皮、药室内壁、中层和腺质绒毡层组成,花药壁发育方式为单子叶型,药室内壁部分细胞发育后期发生纤维状加厚。小孢子母细胞减数分裂过程的胞质分裂为连续型,四分体多数为左右对称型,偶有四面体型。成熟花粉为2细胞型,具1个萌发沟。经TTC法检验,成熟花粉生活力为86.3%。从小孢子的发生及雄配子体发育的整个过程看,未见异常现象,能形成大量正常的成熟花粉。  相似文献   

5.
一品红雄配子体发育研究   总被引:1,自引:0,他引:1  
一品红花药来源于雄蕊原基,花药由表皮(1层)、药室内壁(1层)、中层(1层)、绒毡层(1层)及造胞细胞组成,花药四室,药壁发育为双子叶型。小孢子发生和雄配子体发育是经由小孢子母细胞减数分裂形成四分体,该四分体胞质分裂为同时型,四分体排列为四面体型,小孢子再经有丝分裂形成2-核花粉。花药壁层的变化是表皮在花药成熟期消失,中层在四分体时消失,药室内壁在花药成熟期形成柱状纤维层。绒毡层在单核小孢子期径向伸长,有双核或多核,另外有的绒毡层细胞形成横隔或类胎座;进入2-核花粉期,绒毡层细胞分泌颗粒物进入药室,为非典型腺质绒毡层;进入成熟期绒毡层消失。同时观察到花药发育异常现象。  相似文献   

6.
光(温)敏核不育水稻花药和小孢子发生的细胞化学   总被引:6,自引:0,他引:6  
利用细胞化学方法,对光(温)敏核不育水稻农垦585和W6154S的花药和小孢子发生过程的观察结果表明,在可育条件下,其花药组织和小孢子发生过程不论形态结构还是细胞化学变化都基本一致。小孢子母细胞时期的药隔薄壁组织、药壁中层及药室内壁中分布了一些多糖颗粒,但到进入减数分裂时多糖颗粒基本消失。绒毡层在解体前一直富含细胞质,从染色反应看,它表现为小孢子母细胞时期的蛋白质向减数分裂开始后的多糖物质的转变过程。在不育条件下,农垦585在小孢子母细胞时期就出现异常,其败有时间比W6154S要稍早一些。两者最后都表现为典败,但W6154S的花药壁解体较为彻底,只剩下干皱的表皮和药室内壁,而农垦585的花药壁还有多层细胞结构。  相似文献   

7.
In this study anther ontogeny of Campsis radicans (L.) Seem. was investigated by transmission electron microscopy and light microscopy with special reference to the development of the anther wall. The anther wall formation follows the dicotyledonous type. The differentiation in anther starts with the appearance of archesporial cells which undergo periclinal divisions to give primary parietal layer to the epidermal site and the primary sporogenous cells to the inside. The primary parietal layer also divides to form two secondary parietal layers. Later, the outer secondary parietal layer (spl1) forms the endothecium and the middle layer by periclinal division whereas the inner one (spl2) directly develops into the outer tapetum forming the inner most layer of the anther wall. The sporogenous tissue is generally organized in two rows of cells with a horseshoe-shaped outline. The remainder of the tapetum lining the sporogenous mass is derived from the connective tissue. The tapetum thus has dual origin and dimorphic. Anthers are tetrasporangiate. The wall of the anther consists of an epidermis, endothecium, middle layer, and the secretory type tapetum. Tapetal cells are usually binucleated. Epidermis and Endothecium layers of anther wall remain intact until the end of anther and pollen development; however, middle layer and tapetum disappear during development.  相似文献   

8.
Anther and pollen development in staminate and pistillate flowers of dioecious Melicoccus lepidopetalus (Sapindaceae) were examined by light and electron microscopy. Young anthers are similar in both types of flowers; they consist of epidermis, endothecium, two to four middle layers and a secretory tapetum. The microspore tetrads are tetrahedral. The mature anther in staminate flowers presents compressed epidermal cells and endothecium cells with fibrillar thickenings. A single locule is formed in the theca by dissolution of the septum and pollen grains are shed at two-celled stage. The mature anthers of pistillate flowers differ anatomically from those of staminate flowers. The epidermis is not compressed, the endothecium does not develop fibrillar thickenings, middle layers and tapetum are generally persisting, and the stomium is nonfunctional. Microspore degeneration begins after meiosis of microspore mother cells. At anthesis, uninucleate microspores and pollen grains with vegetative and generative nuclei with no cytokinesis are observed. Some pollen walls display an abnormal exine deposition, whereas others show a well formed exine, although both are devoid of intine. These results suggest that in the evolution towards unisexuality, the developmental differences of anther wall tissues and pollen grains between pistillate and staminate flowers might become more pronounced in a derived condition, such as dioecy.  相似文献   

9.
利用石蜡切片技术,对百合科植物开口箭(Tupistra chinensis Baker)大小孢子发生及雌雄配子体发育进程进行胚胎学观察分析,以明确开口箭胚胎发育的特征,为百合科植物的研究提供生殖生物学依据。结果表明:(1)开口箭花药具有4个药室,花药壁的发育方式为基本型,由表皮、药室内壁、中层及绒毡层组成;绒毡层发育类型为分泌型,到四分体花药阶段绒毡层细胞开始解体退化,花药成熟时完全消失。(2)花粉母细胞减数分裂为连续型,依次形成二分体、四分体,四分体为左右对称形;成熟花粉为2-细胞花粉,具单萌发沟。(3)子房3室,倒生型胚珠6枚,双珠被,薄珠心;在花部的分化早期,由珠心顶端表皮下方分化出雌性孢原细胞,孢原细胞经过一次平周分裂形成周缘细胞和造孢细胞,造孢细胞发育为大孢子母细胞;大孢子母细胞第一次减数分裂后形成二分体,珠孔端的二分体孢子退化,合点端的二分体孢子继续第二次分裂,形成两个子细胞依次发育为二核胚囊、四核胚囊和八核胚囊;开口箭的胚囊发育类型为葱型。  相似文献   

10.
Abstract

The anthers are tetrasporangiate. The anther wall comprises epidermis, fibrous endothecium, middle layer and tapetal layer. The tapetum is of the Glandular type and its cells remain uninucleate. Meiosis in pollen mother cells is normal and simultaneous cytokinesis leads to the formation of tetrahedral and decussate microspore tetrads. The pollen grains are shed at 2-celled stage. The ovule is campylotropous, bitegmic and crassinucellate. Meiosis in megaspore mother cell results in the formation of linear or occasionally T-shaped megaspore tetrad. The chalazal megaspore develops into Monosporic Polygonum type of embryo sac. Endosperm development is of the Nuclear type.  相似文献   

11.
蒙古莸小孢子发生和雄配子体发育的研究   总被引:1,自引:1,他引:0  
运用常规石蜡切片技术对蒙古莸小孢子发生和雄配子体发育进行了观察.结果表明:(1)花药4室,花药壁由4层细胞组成,由外向内分别为表皮、药室内壁、1层中层和绒毡层,花药壁发育方式为双子叶型.(2)花药壁表皮具多细胞腺体,药室内壁、药隔部分细胞发育后期均发生纤维性加厚.(3)绒毡层细胞有两种来源,外周部分来源于初生壁细胞,近药隔部分来源于药隔细胞.腺质绒毡层,发育后期为二核.(4)小孢子母细胞减数分裂过程胞质分裂为同时型,四分体多数为四面体型,偶有左右对称型.(5)成熟花粉为2细胞型,具3个萌发沟.  相似文献   

12.
单叶蔓荆小孢子发生和雄配子体的发育   总被引:3,自引:0,他引:3  
王仲礼  孔冬瑞  王磊 《植物研究》2007,27(6):664-668
利用常规石蜡制片法对单叶蔓荆小孢子发生和雄配子体发育进行了详细观察。主要结果如下:(1)花药壁由四层细胞构成,由外到内分别为表皮、药室内壁、中层和绒毡层,花药壁发育方式为双子叶型。(2)花药壁表皮细胞具多细胞腺体。(3)药室内壁和部分药隔细胞具纤维性加厚。(4)绒毡层细胞有两种来源,外周部分来源于初生壁细胞,近药隔部分来源于药隔细胞。绒毡层为分泌型,细胞具双核。(5)小孢子母细胞减数分裂过程中胞质分裂为同时型,形成的四分体主要为四面体型排列,偶有左右对称型。(6)成熟花粉粒为2细胞型,花粉具3孔沟。  相似文献   

13.
利用常规石蜡切片技术对柠条锦鸡儿小孢子发生及雄配子体发育的过程进行了观察,为柠条锦鸡儿生殖生物学提供基础资料。结果表明:(1)柠条锦鸡儿雄蕊花药4室,花药壁完全分化时,由外到内依次是表皮、药室内壁、中层和绒毡层,花药壁发育为基本型;表皮细胞1层,发育过程中始终存在;药室内壁在花药成熟时形成带状纤维层加厚;幼小花药壁的中层1~2层细胞,在花药发育成熟时退化消失;绒毡层1层细胞,腺质绒毡层,花药成熟时消失。(2)小孢子母细胞减数分裂过程中的胞质分裂为同时型,产生四面体型和左右对称型小孢子。(3)成熟花粉粒为二细胞型,扫描电镜下观察其成熟花粉粒为圆球形,外壁近光滑。(4)花粉母细胞分裂后形成的四分体小孢子中出现多核仁现象,核仁数在2~6个范围变化,推测这可能和末期Ⅱ核仁融合的不彻底有关。研究发现,柠条锦鸡儿小孢子发生和雄配子发育过程没有发现异常现象。  相似文献   

14.
This study aimed to elucidate the anther wall development, pollen wall development, and exine structure of Trochodendron aralioides Siebold and Zuccarini, a tree with primitive vessels but long considered to lack vessel elements in its wood. The anther wall is the basic type: epidermis, endothecium layer, three middle layers, and tapetum. The anther tapetum is glandular and cells are uniseriate. Microspore mother cells undergo meiosis with simultaneous cytokinesis to produce tetrahedral tetrads enclosed within a callose wall. Before development of the protectum, primexine is inserted against the callose, and the plasma membrane is invaginated. Then, the probacula are elongated under the protectum and arise basally from the plasma membrane. The foot layer formation is concomitant with callose wall dissolution. The foot layer is thick, and the endexine is thin. The foot layer and the endexine are both continuous. The intine is initially formed in the vacuolated microspore stage. Hollow Ubisch bodies are observed on the inner surface of the tapetum in free microspore stage. Pollen grains are tricolporate and 2-celled at the time of shedding. The numerous anthers of a single flower are at different development stages in both protandrous and protogynous individuals.  相似文献   

15.
对垂花悬铃花雄配子体发育观察表明,其花药由表皮(1层)、药室内层(1层)、中层(2层)、绒毡层(1层)及造孢细胞组成,花药四室,药壁发育为双子叶型。雄配子体发育经由花粉母细胞减数分裂形成四分体,该四分体胞质分裂为同时型,四分体排列方式为四面体型,十字交叉型及左右对称型;小孢子再经有丝分裂形成营养核和生殖核,生殖核再经有丝分裂形成3-核花粉。花药壁层的变化,在单核小孢子期,表皮细胞解体,仅留下痕迹;中层在花粉母细胞期逐渐消失;药室内壁在单核小孢子期开始纤维化;绒毡层在单核小孢子期消失,属变形绒毡层。雌配子体发育观察表明,其子房上位,5室,每室1个胚珠,胚珠弯生,中轴胎座,大多数胚珠发育停留在珠心形成阶段,极少数珠心形成一群孢原细胞及单核、双核胚囊。  相似文献   

16.
对广西含笑的小孢子发生和雄配子体形成过程进行了解剖学研究.广西含笑的花药具4个花粉囊,花药壁由表皮、药室内壁、中层(3~5层)和绒毡层(1~2层)组成.绒毡层为腺质绒毡层,细胞具2至多核,到花粉成熟时自溶消失.小孢子母细胞减数分裂的胞质分裂为修饰性同时型,四分体排列方式为交叉型、对称型、"T"型(极少),成熟花粉粒具单...  相似文献   

17.
黄衡宇  龙华  易婷婷  李鹂 《广西植物》2010,30(5):584-593
用石蜡切片法对獐牙菜小孢子发生及雄配子体发育过程进行首次观察研究。主要结果如下:花药四室,药壁发育为基本型;绒毡层异型起源,属于腺质型绒毡层,药室内具有的退化绒毡层核是早期该层细胞有丝分裂凸入药室中央并原位退化形成的;中层细胞2层;药室内壁同表皮同时宿存,细胞柱状伸长,纤维状加厚。小孢子母细胞减数分裂为同时型,四分体排列方式主要为四面体形,少数为左右对称形和十字交叉形;成熟花粉多为2-细胞类型,偶见3-细胞型,具三萌发孔。  相似文献   

18.
Successful sexual reproduction depends on normal cell differentiation during early anther development in flowering plants. The anther typically has four lobes, each of which contains highly specialized reproductive (microsporocyte) and somatic cells (epidermis, endothecium, middle layer, and tapetum). To date, six leucine-rich repeat receptor-like protein kinases (LRR-RLK) have been identified to have roles in regulation of anther cell patterning in Arabidopsis thaliana. EXCESS MICROSPOROCYTES1 (EMS1)/EXTRA SPOROGENOUS CELLS (EXS) and SOMATIC EMBRYOGENESIS RECEPTOR-LIKE KINASES1/2 (SERK1/2) signal the differentiation of the tapetum. BARELY ANY MERISTEM1/2 (BAM1/2) defines anther somatic cell layers, including the endothecium, middle layer, and tapetum. Moreover, RECEPTOR-LIKE PROTEIN KINASE2 (RPK2) is required for the differentiation of middle layer cells. In addition to process of anther cell differentiation, conserved regulation of anther cell differentiation in different plant species, this review mainly discusses how these receptor-like kinases and other regulators work together to control anther cell fate determination in Arabidopsis.  相似文献   

19.
The mode of anther opening and the morphological and histological variability of the stomium are described in 30 Solanum species. Poricidal, poricidal‐longitudinally dehiscing and longitudinally dehiscing anthers are observed. In the three types, the stomium may be diverse with regard to shape and histological characteristics before opening, but is always composed of small epidermal cells as the sole anther wall layer; the stomial cells may be differentiated only in part of the anther length. Particular crescent‐shaped structures in the epidermis, called ‘ridges’, are observed to line the stomium in most species. These ridges may be related to the stomium opening, working together with the cells with thickened walls of the anther. Cells with thickened walls are developed in the endothecium, middle layers and/or connective tissue at the apical end of the anther, surrounding the pore; only in the longitudinally dehiscing anthers of S. nitidum does an endothecium with thickened cell walls develop along its entire length. At least two histological features (the differentiation of small stomial epidermal cells as a unique layer, and the distribution of cells with thickened walls) seem to constrain the form of the open stomium. © 2008 The Linnean Society of London, Botanical Journal of the Linnean Society, 2008, 158 , 344–354.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号